

Coupon Collector's Problem for Fault Analysis against AES High Tolerance for Noisy Fault Injections

<u>Yu Sasaki</u>¹, Yang Li², Hikaru Sakamoto², and Kazuo Sakiyama²

- 1: NTT Corporation
- 2: University of Electro-Communications

Research Summary

- Improve a side-channel analysis (SQUARE fault analysis) against AES.
- A key is recovered even if undesired fault injection (noise) occur with some probability.
- The attack is evaluated with coupon collector's problem.

Ref.	#desired fault	#noise	complexity
[PY06]	256	0	2 ³⁷
[K10]	44	0	2 ³⁴
Ourc	256	1610	2 ⁴⁵
Ours	128	49	2 ⁴¹

אדד Coupon Collector's Problem (CCP)

For each coupon drawing event, 1 random coupon is obtained.

How many events are expected to complete all coupons? *n* ln(*n*)

• CCP can be applied to the fault attack.

Symmetric-key Encryption in Practice

• Symmetric-key encryption is widely used to protect the communication.

- AES is the most popular algorithm.
- Its implementation needs to be protected.

Fault Attack

- A kind of side-channel analysis.
- Give some external factor during the encryption computation to make some error.
 - Laser irradiation: give extra energy to flip internal state bits.
 - Clock glitch: force to start the next computation before the previous computation is finished.

AES

- 128-bit block-cipher
- Standardized and used all over the world
- Mix 16-byte data with 10 rounds
- Computations in each round is as follows.

MC: Column-wise linear operation

• NTT The Last 4 Rounds of AES

7

DFA and Its Countermeasure

- Differential fault analysis (DFA) is famous as a very powerful attack.
- If a fault is injected during the last 3 rounds of AES, the key is recovered easily.
- Countermeasures against fault analysis are expensive (overhead is 200%).
- It's natural to minimize the location to be protected: only the last 3 rounds.

• NTT The Last 4 Rounds of AES

Research Motivation

- Phan and Yin showed that the key is recovered even with the fault in round 7.
- Do we need to protect round 7 as well?
- Unfortunately, their attack assumption (fault model) is very strong.

In this research, we relax the assumption!!

אדד SQUARE DFA [PhanYin06]

• While the same plaintext is encrypted 256 times, a byte in round 7 is forced to take all 256 values by using the fault.

Fault model:

- The attacker can flip any bit
- Undesired fault (noise) never occurs

The key K_{10} is guessed column by column.

If the guess is correct, each byte takes all 256 distinct values after the 1 round decryption.

Probability:

$$\left(\prod_{i=0}^{255} \frac{(256-i)}{256}\right)^4$$

256 values are not necessary. α values are enough. For the correct guess, each byte takes α values.

Probability:
$$\left(\prod_{i=0}^{\alpha-1} \frac{(256-i)}{256}\right)^4$$

The probability is smaller than 2^{-32} for $\alpha = 44$.

Noisy Fault Model

- Previous SQUARE DFAs assume that unintended fault never occurs.
- But, in practice, noise is obtained.

Our Attacks

- α : the number of distinct fault values
- *n*: the total number of texts to be analyzed

For the correct guess at least α distinct values appear, otherwise, the guess is wrong.

What's the probability?

ONT Probability Estimation with CCP

 Suppose that α = 256. Each guess is a right key candidate if all 256 values are completed after *n* trials.

- equivalent to the CCP. $Pr=2^{-1}$ even if n=1553.
- For α < 256, it becomes a variant of the CCP.

NTT Probability Estimation with CCP

Example Parameters

Value of *n*

	$\alpha = 64$	$\alpha = 128$	$\alpha = 256$
$P(\alpha, 256, n)^4 = 2^{-1}$	77	186	1866
$P(\alpha, 256, n)^4 = 2^{-4}$	73	177	1553
$P(\alpha, 256, n)^4 = 2^{-32}$	66	156	933

Conclusion

- We generalized the SQUARE DFA so that the noisy fault injection can be accepted.
- We did the probability estimation with the coupon collector's problem.
- Possible future direction
 - Detect a suitable fault injection method.
 - Evaluate other ciphers.

Thank you for your attention !!