A Scalable Scheme for Privacy-Preserving Aggregation of Time-Series Data

Marc Joye • Benoît Libert

Smart Metering

- Frequent aggregates of consumption over a population of users is useful to finely tune the service
 - better prices by adapting the load or forecasting the supply
 - useful to rapidly detect anomalies on the grid
- BUT privacy issues...

Easy case

- User *i* encrypts her input x_i under the aggregator's public key pk and sends $c_i = \text{Encrypt}_{pk}(x_i)$
- Aggregator decrypts each c_i , obtains $\{x_i\}_{i=1}^n$ and reveals the aggregate $\sum_{i=1}^n x_i$

Additively Homomorphic Encryption

 $\text{Encrypt}_{pk}(\mathbf{x}_i) \star \text{Encrypt}_{pk}(\mathbf{x}_j) = \text{Encrypt}_{pk}(\mathbf{x}_i + \mathbf{x}_j)$

■ ElGamal's cryptosystem Sender random $r \in_R \mathbb{Z}_q$ $c_{i,1} = g^r$ and $c_{i,2} = h^{x_i}y^r$ $\frac{(c_{i,1}, c_{i,2})}{(c_{i,1}, c_{i,2})}$ $\frac{pk}{pk} = (\langle g \rangle, q, h, y = g^s)$ $h^{x_i} = c_{i,2}c_{i,1}^{-s}$ $\Rightarrow x_i = ...$ (requires x_i to be "small") $\frac{Remark:}{(c_{i,1}, c_{i,2})} * (c_{j,1}, c_{j,2}) = (c_{i,1} \cdot c_{j,1}, c_{i,2} \cdot c_{j,2})$ $= (g^{r+r'}, h^{x_i+x_j}y^{r+r'})$ technicolor $\mathsf{Encrypt}_{pk}(\pmb{x}_i) \star \mathsf{Encrypt}_{pk}(\pmb{x}_j) = \mathsf{Encrypt}_{pk}(\pmb{x}_i + \pmb{x}_j)$

Paillier's cryptosystem

Trusted Aggregator (Optimized Version)

Easy case

- User *i* encrypts her input x_i under the aggregator's public key pk and sends $c_i = \text{Encrypt}_{pk}(x_i)$
- Aggregator computes $C = \prod_{i=1}^{n} c_i$, decrypts C and reveals the aggregate $\sum_{i=1}^{n} x_i$

Limitation

Aggregator must be trusted not to reveal the x_i 's

More difficult case

Can we do the same without trusting the aggregator?

Solution #1: Splitting Roles

Add an extra party: the Crypto Service Provider (CSP)

- 1 User *i* encrypts her input x_i under the CSP's public key *pk* and sends $c_i = \text{Encrypt}_{pk}(x_i)$ to the aggregator
- 2 Aggregator aggregates the c_i 's as

$$\boldsymbol{C} = \prod_{i=1}^{n} \boldsymbol{c}_{i} = \operatorname{Encrypt}_{pk} \left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \right)$$

and sends C to the CSP

3 CSP decrypts C and returns the aggregate $\sum_{i=1}^{n} x_i$

Distribute the decryption capability among two (or more) parties

Financial Cryptography 2013 · Okinawa, April 1-5, 2013

Solution #3: Interaction

Users sequentially aggregate their inputs

1 Centralized aggregator holds a public key *pk*

2 User *i* receives an encrypted "aggregate-so-far"

 $C_{i-1} = \text{Encrypt}_{pk}(x_1 + x_2 + \ldots + x_{i-1})$

and appends its input, $C_i = C_{i-1} \star \text{Encrypt}_{pk}(x_i)$, and send C_i to user i + 1

3 Aggregator receives $C_n = \text{Encrypt}_{pk}(x_1 + x_2 + \ldots + x_n)$, decrypts it, and obtains $\sum_{i=1}^n x_i$

Shi-Hubert-Chan-Rieffel-Chow-Song (NDSS 2011)

- Aggregator obtains the sum $\sum_{i=1}^{n} x_i$ and nothing else, without interaction
- Involves a setup phase where an off-line TTP provides secret keys to users and aggregator
- AO security: corrupting some users and/or the aggregator only reveals partial sums $\sum_{i \in C} x_i$ for some $C \subset \{1, ..., n\}$

Shi et al. Scheme

Setup phase

- Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of prime order q and $H : \{0, 1\}^* \to \mathbb{G}$ be a hash function
- Aggregator has $s_0 \in \mathbb{Z}_q$ and user *i* gets $s_i \in \mathbb{Z}_q$ s.t. $\sum_{i=0}^n s_i = 0$

Aggregation

• At period t, user i encrypts x_i as

$$c_i = g^{x_i} \cdot H(t)^{s_i}$$

• Aggregator computes $C = H(t)^{s_0} \cdot \prod_{i=1}^n c_i$ and obtains

$$\boldsymbol{C} = \boldsymbol{g}^{\sum_{i=1}^{n} \boldsymbol{x}_{i}} \cdot \boldsymbol{H}(t)^{\sum_{i=0}^{n} \boldsymbol{s}_{i}} = \boldsymbol{g}^{\sum_{i=1}^{n} \boldsymbol{x}_{i}}$$

which yields $\sum_{i=1}^{n} \mathbf{x}_{i}$

Theorem (Shi et al., NDSS 2011)

The scheme provides **aggregator-oblivious security** under the **Decision Diffie-Hellman** (DDH) assumption (in the random oracle model)

DDH: Given $(g, g^a, g^b, T) \in \mathbb{G}^3$, no PPT algorithm can decide if $T = g^{ab}$ or $T \in_R \mathbb{G}$

Drawbacks

- Decryption is somewhat expensive
 - requires the computation of a discrete log in DDH group G
- Security reduction is pretty loose
 - includes a degradation factor of $O(n^3)$
- \implies the scheme is not scalable

Financial Cryptography 2013 · Okinawa, April 1-5, 2013

Our Solution: Scalable AO Scheme

- Challenge left open by Shi *et al*.(NDSS 2011):
 - How to effciently compute sums over large plaintext spaces?
 - Investigate other algebraic settings
- Natural candidates: Paillier-like systems

Problem

The proof offered by Shi *et al.* does not extend to this setting
requires DDH groups of known (prime) orders

technicolor

Setup phase

- Let N = pq and $H : \{0, 1\}^* \to \mathbb{Z}^*_{\mathbb{N}^2}$ be a hash function
- Aggregator has $s_0 \in \pm \{0, 1\}^{2\ell}$ and user *i* gets $s_i \in \pm \{0, 1\}^{2\ell}$ s.t. $\sum_{i=0}^{n} s_i = 0$ (over \mathbb{Z})

Aggregation

Financial Cryptography 2013 · Okinawa, April 1-5, 2013

Security Analysis

Theorem

The scheme provides **aggregator-oblivious security** under the **Decision Composite Residuosity** (DCR) assumption (in the ROM)

DCR: Given N = pq, no PPT algorithm can distinguish the distibutions $\mathcal{D}_0 = \{x^N \mod N^2 \mid x \in_R \mathbb{Z}_{N^2}^*\}$ and $\mathcal{D}_1 = \{x \in_R \mathbb{Z}_{N^2}^*\}$

- **Tighter security reduction (degradation of** $O(q_{enc})$ **)**
 - i.e., indep. of the number of users
- <u>Reminder</u>: Shi *et al.* scheme has a degradation of $O(n^3 \cdot q_{hash})$

technicolor

- Sketch: use a sequence of games
 - Game 0: real game
 - Game 1: change the output of random oracle queries
 - If $t = t^*$, set $H(t^*) \in_R \mathbb{Z}^*_{N^2}$
 - If $t \neq t^*$, set H(t) as a N-th residue
- Under DCR assumption, Game 0 and Game 1 are indistinguishable

• Key observation: in Game 1, no information about $\{s_i \mod N\}_{i \in S^*}$ is leaked to the adversary

 $\Rightarrow c_{i,t^{\star}} = (1 + N)^{x_i} \cdot H(t^{\star})^{s_i}$ perfectly hides x_i

Financial Cryptography 2013 · Okinawa, April 1-5, 2013

Summary

Aggregator-oblivious aggregation is now scalable and practical

- Fast decryption (aggregation)
- On-line/off-line efficiency: only one on-line multiplication
- Tighter security (independent of the number of users)

Some research problems

- Eliminate the random oracle model
- Compute other statistics (weighted sum, standard deviation, etc.) without interaction

