
A Scalable Scheme for Privacy-Preserving
Aggregation of Time-Series Data

Marc Joye � Benoît Libert

Smart Metering

Frequent aggregates of consumption over a population of users
is useful to finely tune the service

better prices by adapting the load or forecasting the supply
useful to rapidly detect anomalies on the grid

BUT privacy issues. . .



Trusted Aggregator

Easy case

User i encrypts her input xi under the aggregator’s public key
pk and sends ci = Encryptpk(xi)

Aggregator decrypts each ci, obtains {xi}ni=1 and reveals the
aggregate

∑n
i=1 xi

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Additively Homomorphic Encryption

Encryptpk(xi) ? Encryptpk(xj) = Encryptpk(xi + xj)

ElGamal’s cryptosystem

Sender Receiver
pk←−−−−− pk = (〈g〉,q,h, y = gs)

random r ∈R Zq

ci,1 = gr and ci,2 = hxiyr
(ci,1,ci,2)−−−−−→ hxi = ci,2ci,1−s

=⇒ xi = . . .
(requires xi to be “small”)

Remark: (ci,1, ci,2) ? (cj,1, cj,2) = (ci,1 · cj,1, ci,2 · cj,2)
= (gr+r′ ,hxi+xjyr+r′)

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Additively Homomorphic Encryption

Encryptpk(xi) ? Encryptpk(xj) = Encryptpk(xi + xj)

Paillier’s cryptosystem

Sender Receiver
pk←−−−−− pk = N, sk = λ

random r ∈R Z∗N
ci = (1 + N)xirN mod N2 ci−−−−−→ ciλ ≡ (1 + xiλN) (mod N2)

=⇒ xi = . . .

Remarks: (1) ci ? cj = ci · cj
= (1 + N)xi+xj(rr′)N (mod N2)

(2) (1 + N)x ≡ 1 + Nx (mod N2)

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Trusted Aggregator (Optimized Version)

Easy case

User i encrypts her input xi under the aggregator’s public key
pk and sends ci = Encryptpk(xi)

Aggregator computes C =
∏n

i=1 ci, decrypts C and reveals the
aggregate

∑n
i=1 xi

Limitation

Aggregator must be trusted not to reveal the xi’s

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Untrusted Aggregator

More difficult case

Can we do the same without trusting the aggregator?

The problem: make sure that aggregator only obtains
∑n

i=1 xi

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Solution #1: Splitting Roles

Add an extra party: the Crypto Service Provider (CSP)

1 User i encrypts her input xi under the CSP’s public key pk and
sends ci = Encryptpk(xi) to the aggregator

2 Aggregator aggregates the ci’s as

C =
n∏

i=1

ci = Encryptpk
(∑n

i=1 xi
)

and sends C to the CSP

3 CSP decrypts C and returns the aggregate
∑n

i=1 xi

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Solution #2: Secret Sharing

Distribute the decryption capability among two (or more) parties

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Solution #3: Interaction

Users sequentially aggregate their inputs

1 Centralized aggregator holds a public key pk

2 User i receives an encrypted “aggregate-so-far”

Ci−1 = Encryptpk(x1 + x2 + . . .+ xi−1)

and appends its input, Ci = Ci−1 ? Encryptpk(xi), and send Ci to
user i+ 1

3 Aggregator receives Cn = Encryptpk(x1 + x2 + . . .+ xn),
decrypts it, and obtains

∑n
i=1 xi

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Solution #4: Aggregator-Oblivious Evaluation

Shi-Hubert-Chan-Rieffel-Chow-Song (NDSS 2011)

Aggregator obtains the sum
∑n

i=1 xi and nothing else, without
interaction

Involves a setup phase where an off-line TTP provides secret
keys to users and aggregator

AO security: corrupting some users and/or the aggregator only
reveals partial sums

∑
i∈C xi for some C ⊂ {1, . . . , n}

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Shi et al. Scheme

Setup phase
Let G = 〈g〉 be a cyclic group of prime order q and
H : {0, 1}∗ → G be a hash function
Aggregator has s0 ∈ Zq and user i gets si ∈ Zq s.t.

∑n
i=0 si = 0

Aggregation

At period t, user i encrypts xi as

ci = gxi · H(t)si

Aggregator computes C = H(t)s0 ·
∏n

i=1 ci and obtains

C = g
∑n

i=1 xi · H(t)
∑n

i=0 si = g
∑n

i=1 xi

which yields
∑n

i=1 xi

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Analysis

Theorem (Shi et al., NDSS 2011)

The scheme provides aggregator-oblivious security under the
Decision Diffie-Hellman (DDH) assumption (in the random oracle
model)

DDH: Given (g, ga, gb,T) ∈ G3, no PPT algorithm can decide if T = gab or T ∈R G

Drawbacks
Decryption is somewhat expensive

requires the computation of a discrete log in DDH group G
Security reduction is pretty loose

includes a degradation factor of O(n3)

=⇒ the scheme is not scalable

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Our Solution: Scalable AO Scheme

Challenge left open by Shi et al.(NDSS 2011):
How to effciently compute sums over large plaintext spaces?
Investigate other algebraic settings

Natural candidates: Paillier-like systems

Problem
�

The proof offered by Shi et al. does not extend to this setting
requires DDH groups of known (prime) orders

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Our Solution: Scalable AO Scheme (2)

Setup phase
Let N = pq and H : {0, 1}∗ → Z∗N2 be a hash function
Aggregator has s0 ∈ ±{0, 1}2` and user i gets si ∈ ±{0, 1}2` s.t.∑n

i=0 si = 0 (over Z)

Aggregation

At period t, user i encrypts xi as

ci = (1 + N)xi · H(t)si mod N2

Aggregator computes C = H(t)s0 ·
∏n

i=1 ci mod N2 and obtains

C ≡ (1 + N)
∑n

i=1 xi · H(t)
∑n

i=0 si ≡ 1 + N · (
∑n

i=1 xi) (mod N2)

which yields
∑n

i=1 xi as (C− 1)/N

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Security Analysis

Theorem

The scheme provides aggregator-oblivious security under the
Decision Composite Residuosity (DCR) assumption (in the ROM)

DCR: Given N = pq, no PPT algorithm can distinguish the distibutions
D0 = {xN mod N2 | x ∈R Z∗

N2} and D1 = {x ∈R Z∗
N2}

Tighter security reduction (degradation of O(qenc))
i.e., indep. of the number of users

Reminder: Shi et al. scheme has a degradation of O(n3 · qhash)

Financial Cryptography 2013 · Okinawa, April 1–5, 2013



Security Proof

Sketch: use a sequence of games
Game 0: real game
Game 1: change the output of random oracle queries

If t = t?, set H(t?) ∈R Z∗
N2

If t 6= t?, set H(t) as a N-th residue

Under DCR assumption, Game 0 and Game 1 are
indistinguishable
Key observation: in Game 1, no information about
{si mod N}i∈S? is leaked to the adversary
⇒ ci,t? = (1 + N)xi · H(t?)si perfectly hides xi

Financial Cryptography 2013 · Okinawa, April 1–5, 2013

Summary

Aggregator-oblivious aggregation is now scalable and practical

Fast decryption (aggregation)

On-line/off-line efficiency: only one on-line multiplication

Tighter security (independent of the number of users)

Some research problems

Eliminate the random oracle model

Compute other statistics (weighted sum, standard deviation,
etc.) without interaction

Financial Cryptography 2013 · Okinawa, April 1–5, 2013


