Unconditionally-Secure Robust Secret Sharing with Minimum Share Size

Rei Safavi-Naini and Mahabir P. Jhanwar University of Calgary, Canada

Financial Cryptography 2013

Outline of the talk

- ► Secret Sharing
- ► Robust Secret Sharing
- ► Proposed Scheme
- ► Comparing with Existing Constructions
- ► Concluding Remarks

(t, n)-threshold Secret Sharing

Secret Sharing:

$$s \xrightarrow{\mathsf{Share \ Distribution}} s_1, s_2, \dots, s_n \xrightarrow{\mathsf{Reconstruction}} s_{\mathsf{any} \ \mathsf{t+1}} \mathsf{shares}$$

Privacy (Perfect): t shares gives no information about s

$$s_{i_1}, \ldots, s_{i_t} \xrightarrow{\text{unlimited adversary}} ?$$

Example (Shamir Secret Sharing)

- Secret: $s \in \mathbb{F}$.
- $f(x) = s + a_1x + a_2x^2 + \dots + a_tx^t \in \mathbb{F}[x]$. Shares: $s_1 = f(1), s_2 = f(2), \dots, s_n = f(n)$
- ▶ Privacy and Reconstructability: use Lagrange Interpolation.

▶ Information Rate: $\rho = \min \left\{ \frac{\log_2 s}{\log_2 s_i} : 1 \le i \le n \right\}$.

- ▶ Perfect secret sharing, $\rho \le 1$
 - share size ≥ secret size
- ▶ Ideal Secret Sharing: $\rho = 1$
- ▶ Shamir secret sharing scheme is ideal.

Robust Secret Sharing

Active corruption: participants modify submitted shares.

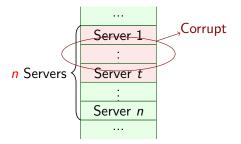
▶ Robust Reconstruction: up to t shares are faulty

$$s'_{i_1}, \dots, s'_{i_t}, s_{t+1} \longrightarrow s'$$

 $s'_{i_1}, \dots, s'_{i_t}, s_{t+1}, \dots, s_n \longrightarrow s$

Application: Secure Data Storage

▶ Data file →



► Robust Reconstruction → Data file

Application: Constructing Robust Primitives

Building block of other robust crypto primitives:
 Secure Message Transmission
 Secret Sharing with Cheater Detection/Identification
 Verfiable Secret Sharing
 Multiparty Computation

Robust Secret Sharing

Algorithms

- ▶ Share: Dealer \mathcal{D} : For a secret $s \in \mathcal{S}$,
 - Generates $\sigma_1, \ldots, \sigma_n$
 - Privately gives σ_i to P_i .
- ► Rec: Reconstructor R
 - Receives σ_i from P_i, ∀i
 (possibly several communication rounds),
 - Produces an output s'.

Security

- ▶ Privacy: No information about *s* is leaked during Share.
- ▶ δ Reliability: $\Pr(s' = s) \ge 1 \delta$.

Rushing vs Non-Rushing

► Rushing adversary sees other shares before choosing the wrong shares:

Rushing adversary can know the secret.

00

Cost of Robustness

 \triangleright Depends on t and n:

$$1 \frac{| \underline{|}_{n/3 \le t < n/2} |}{t \le n/3} t \ge n/2}$$

- ▶ t < n/3: Robustness is for free!
 - Shamir secret sharing is robust: reconstruction is Reed-Solomon decoding.
- ▶ $t \ge n/2$: Robust secret sharing is not possible.
- ► n/3 < t < n/2:
 - $\delta > 0$.
 - Existing constructions have increased share size .

Approaches to Providing Robustness

- ► Known approaches:
 - 1. $\sigma_i = \{\text{share of } s, \text{additional info}\}\$ Additional info is used for verifying others' shares.
 - 2. $s.r = \rho$ Share three elements satisfying a relation.
- ▶ Our approach: Use the share of one extra honest participant. $\rightarrow n = 2t + 2$.
 - ► For *n* even, this is the minimum. For *n* odd, one extra participants.

Proposed Scheme

- Share:
 - $ightharpoonup s \in \mathbb{F}_q, \quad f(x) \in_R \mathbb{F}_q^{\leq t}[x], f(0) = s.$
 - Find $s_i = f(i), \forall i \in [t+1].$
 - ▶ $\forall i \in [n]$, choose $(r_{i1}, \ldots, r_{i(t+1)}) \in (\mathbb{F}_q)^{t+1}$, such that: any t+1 vectors are linearly independent.
 - $\forall i \in [n], \ \sigma_i = \sum_{j=1}^{t+1} r_{ij} s_j. \qquad \sigma_i \to P_i$
- ► Rec:
 - \triangleright $\forall P_i: \sigma_i \to \mathcal{R}$
 - ▶ For every subset of t + 1 players, \mathcal{R} does the following:
 - Reconstruct $(s'_1, s'_2, \dots, s'_{t+1})$ using t+1 shares.
 - Accept if $\sum_{i=1}^{t+1} r_{ij} s'_i = \sigma_i$ for at least one more share.
 - ▶ Use t+1 shares to find $f(x) \in \mathbb{F}_q^{\leq t}[x]$, s = f(0).

Proposed Scheme

► Share:

Rec: Loop over every t+1 shares.

$$(\sigma_1,\ldots,\sigma_t,\sigma_{t+1},\ldots,\sigma_i,\ldots,\sigma_i,\ldots,\sigma_n)$$

- ▶ *n* vectors such that any t+1 of them are L.I:
 - 1. Choose $z_1, \ldots, z_n, w_1, \ldots, w_{t+1} \in \mathbb{F}_q$ with $z_i + w_j \neq 0$. Define

$$r_i = \left(\frac{1}{z_i + w_1}, \dots, \frac{1}{z_i + w_{t+1}}\right), \ 1 \le i \le n$$
.

There are n + t + 1 random elements.

- 2. Use a $n \times (t+1)$ Vandermonde matrix.
 - *n* random elements.
 - \rightarrow The scheme has O(n) field elements as public values.

$$n > 2t + 2$$

Security

Privacy

Theorem

Any t shares gives no information about the secret (information theoretic).

Reliability

Theorem

For $n, t \in \mathbb{N}$ such that n = 2t + 2, \mathbb{F}_q with $k = \lceil \log_2 q \rceil$, the pair (Share, Rec) forms an n-player (t, δ) -robust secret sharing against non-rushing adversary. Message space is \mathbb{F}_q , and

$$\delta \leq \frac{\sqrt{t+1}}{2^{k-n}} .$$

Comparison with Existing Schemes

Let secret size be k bits.

- ► Cramer, Damgård and Fehr (01), Cabello et. al. (99)
 - ▶ Share size = 3k bits.
 - ▶ Reconstruction: exponential in *n*.
 - ▶ $n \ge 2t + 1$.
- ► Cevallos, Fehr, Ostrovsky and Rabani (12), Rabin et. al. (89)
 - ► Share size = $k + 3n\frac{k}{\lambda}$ bits.
 - ► Reconstruction: polynomial in *n*.
 - ▶ n > 2t + 1.
- ▶ Our Construction
 - ▶ Share size = k bits. (Ideal)
 - ▶ Reconstruction: exponential *n*.
 - $ightharpoonup n \geq 2t + 2$.

- ▶ Proposed an ideal RSSS for $n \ge 2t + 2$.
 - ▶ Idea: use one extra honest participant share for verification.
 - ▶ Reconstruction: exponential.
 - Security against non-rushing adversaries.
- ▶ Can be extended to general access structure.
- Open questions:
 - ▶ Efficient reconstruction.
 - ▶ ideal schemes for n = 2t + 1.