RELATIONGRAM:

Tie-Strength Visualization
for User-Controlled
Online Identity Authentication

Tiffany Hyun-Jin Kim, Virgil Gligor, Jason Hong, Adrian Perrig Carnegie Mellon University

Akira Yamada

KDDI R&D Laboratories

Financial Cryptography and Data Security 2013 April 2, 2013

ONLINE INVITATIONS

- Is this request from claimed sender?
 - Easy to create bogus identity
 - For both non-existing and existing people
 - Phony female: Robin Sage fooled security-savvy users^[1]
 - Existing people Sensitive info available online

DATA ASYMMETRY

- Fundamental problem
 - Sender knows more about sent data than receiver

How can we reduce asymmetry such that receiver (user) can achieve authentication trust for data?

HOW TO REDUCE ASYMMETRY

- Delegate trust decision to 3rd party
 - 3rd party has relationship with receiver
 - Misbehavior to receiver

 loss of social collateral

Recommends unknown sender to receiver

WHEN WILL RECEIVER ACCEPT INPUT?

Notation	Meaning
SC(C)@A	Social collateral that C has with A
SC(B)@C	Social collateral assigned by A that B has with C

Acceptability

• $SC(B)@C \ge T_A(app, attr)$

Deterrence

SC(C)@A – SC(B)@C ≥ $P_A(app, attr)$

SOCIAL COLLATERAL MODEL²

Accountability evidence

- "Carol is accountable for providing correct evidence about her knowledge about Bob to Alice"
- Bob forwards accountability evidence endorsed by Carol
- Carol is deterred from providing false evidence to Alice

RELATIONGRAM

- Useful accountability evidence indicator: tie strength^[3]
 - Closeness or social proximity of two individuals
 - Strong tie: people you really trust
 - Weak tie: loose acquaintances
- Tie strength visualization^[4]
 - Meaningful and intuitive
 - With different combinations of parameters

Why visualization?

- Simple numbers may not capture tie strength with sufficient granularity
 - Context-dependent nature of trust
- Instead, we provide evidence and let people decide

DESIRED PROPERTIES

Meaningful

Diagram should convey meaningful & useful tie strength info

Intuitive

Users can understand diagram without difficulties

Robust

Diagram is robust against attackers manipulating tie strength

Adversary goal: make victims accept invitations

- Manipulate social parameters
- Gather sensitive info of victims & their friends

Do not consider account compromise

RELEVANT PARAMETERS

Intensity

- Amount of time spent
- Phone calls/emails exchanged
- Frequency of interaction^[5]

Intimacy

- Days since last communication
- Distance between hometowns
- Appearances in photos

Reciprocal services

- Applications in common
- Communication reciprocity^[5]

Duration

Length of relationship^[6]

Structural

- Network topology
- Mutual friends^[5]

Emotional support

- Advice on family problems
- Recency of interaction^[5]

Social distance

- Education level
- Socioeconomic status
- Political affiliation
- Race, gencer, ...

RELATIONGRAM ILLUSTRATION

FRIEND AUTHENTICATION PROTOCOL

Evidence Generation

- Bob & Carol mutually agree to disclose graph to Alice
- Carol's phone gathers tie strength info
 - Meeting, call history, SMS texts, Facebook posts, etc.
- Carol signs RelationGram

Evidence Verification

- Alice checks Carol's signature
- Alice authenticates Bob if
 - 1. Tie(Bob,Carol) $\geq Th_{Alice}$
 - SC(Alice, Carol) > Tie(Bob, Carol)
- If 1 fails, Alice can request Bob to provide RelationGram from her other mutual friend

SECURITY ANALYSIS

Inflation attack

- Each parameter (e.g., comm. frequency) can be inflated
- Combination of multiple parameters → challenging

Collusion attack

- Bob has no way of learning Th_{Alice}
- Bob colluding with Alice's other friend is low

SECURITY ANALYSIS

- Impersonation attack
 - Loss of social collateral deters Carol from endorsing Bob
 - Unlikely to have strong RelationGram

FACEBOOK APPLICATION

User study

- Does RelationGram help users authenticate online inviters?
- Amazon Mechanical Turk study
 - 100 participants → 93 eligible for analysis

RELATIONGRAM STUDY RESULTS

Relevance

- 85%: easy to understand tie strength of people on graphs
- 85%: RelationGram captures tie strength

Robustness

- 90%: no strong tie → reject friend request
- → Can protect users from *potentially malicious strangers*

Privacy

82%: willing to share RelationGram with close friends and family

Usability

- 83%: RelationGram is easy to use
- 88%: RelationGram is useful

CONCLUSIONS

RelationGram

- Improves identity authentication in virtual environments
- Consistent with mental models from real-life experience
- Enables users to safely authenticate online identities

People appreciate situational awareness gained from RelationGram

Future work

- Trade-offs between burden on users vs. utility
- Incentives for sharing RelationGrams