
Securely Solving
Simple Combinatorial Graph Problems

Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet,
Olivier Pereira, and Mathieu Van Vyve

Université catholique de Louvain
ICTEAM and IMMAQ institutes
1348 Louvain-la-Neuve – Belgium

Abstract. We investigate the problem of solving traditional combina-
torial graph problems using secure multi-party computation techniques,
focusing on the shortest path and the maximum flow problems. To the
best of our knowledge, this is the first time these problems have been
addressed in a general multi-party computation setting. Our study high-
lights several complexity gaps and suggests the exploration of various
trade-offs, while also offering protocols that are efficient enough to solve
real-world problems.

1 Introduction

Secure multi-party computation – the problem of jointly evaluating a function
on a set of secret inputs without leaking anything but the output of the function
– has been at the center of cryptography research for almost 30 years. A first
series of foundational works [1,2,3,4] demonstrated the possibility to evaluate
any function in various models, the function being described as a circuit. The
attention then largely focused on building solutions for the evaluation of func-
tions of specific interest, leading to secure and efficient protocols for auctions [5],
voting [6], benchmarking [7], face recognition [8] or AES evaluation [9] to only
mention a few.

One common point of all these applications is that the function evaluation
process is naturally oblivious of the inputs on which the function has to be eval-
uated. Computing the highest of n bids or summing n votes is carried out by
performing n comparisons or sums independently of the values that are consid-
ered.

There are large classes of problems however for which the natural evaluation
process depends on the input data. In that case, even if all the manipulated data
are appropriately shared or encrypted, the execution flow might just be sufficient
to leak undesirable information.

This is typically the case in combinatorial problems, of which graph problems
are one of the most common examples. Consider, for instance, a consortium of
delivery companies covering different territories through regular distribution cir-
cuits. These companies might be interested in computing the fastest way to bring

2 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

a package from one place to another, but be reluctant to share with each other the
precise connections they use and the performance of their trucks. Their problem
could be solved by securely evaluating traditional shortest path algorithms such
as those of Bellman-Ford or Dijkstra. The immediate way of securely comput-
ing the shortest path would be to blind (encrypt or share) the weight of all the
edges of the corresponding graph. However this approach could completely miss
its purpose depending on the graph encoding and shortest path algorithm that
are used: if the algorithm conditionally visits the graph by branching as a func-
tion of the secret weights, then the branching patterns could leak a substantial
amount of secret information. In a similar way, the resolution of combinatorial
problems, even on obfuscated inputs, can leak substantial information through
the structure of the combinatorial object that is manipulated, as well as through
its running time. We stress that this is not just a theoretical concern: numerous
techniques have been developed, notably in the line of work on side-channel at-
tacks [10], that can successfully exploit branching patterns and running times in
order to recover the secrets on which computation is performed.

1.1 Our Contributions

This paper investigates the problem of securely solving combinatorial problems
in a multi-party setting through a series of examples taken from graph theory.
To the best of our knowledge, this is the first time that these most classical
algorithmic problems have been addressed in a general secure multi-party setting.
Our solutions have applications in the numerous contexts where a graph is shared
between competing entities. Natural examples include: privacy-preserving GPS
guidance in which one party knows the map while the other knows his origin and
destination, privacy-preserving determination of topological features in social
network (the number of different ways to connect two people can be seen as a
special case of the maximum flow problem, for instance, in which case each party
would know his own friends but no more), or privacy-preserving determination of
the performance of the cooperation between competing network operators (gas,
electricity, logistics, . . .), in which each party would know the capacity of his
own infrastructure but no more. Furthermore, our study raises several intriguing
complexity gaps and suggests the exploration of various trade-offs.
Algorithm Design. We focus our research on computing the shortest path and
the maximum flow based on the secure arithmetic black-box functionality of
Damg̊ard and Nielsen [11] augmented with comparison [12]. That is, our proto-
cols assume access to a functionality that offers secure addition, multiplication
and comparison. This allows us to abstract from the specific security model in
which we want our protocol to be secure: depending on the implementation of
the secure arithmetic black-box that is used, our protocols will be secure only in
the presence of an honest majority or with up to all but one corrupted player, in
the information theoretic or computational model, in front of passive or active
adversaries, . . . Various such implementations, in various models, are available in
tools designed for multi-party computation such as FairplayMP [13], Sepia [14],
Sharemind [15] or VIFF [16].

Securely Solving Simple Combinatorial Graph Problems 3

We focus on two of the most standard graph problems, chosen for their wide
diversity of applications: computing shortest paths and maximum flows. For each
of these problems, we discuss secure evaluation techniques inspired from classical
algorithms of various complexities: Bellman-Ford and Dijkstra for the shortest
path, and Edmonds-Karp and Push-Relabel for the maximum flow.

Our resulting algorithms offer quite different overheads, depending on the
algorithm and the graph structure, as illustrated in Table 1. For those algorithms,
the table shows first the traditional (non secure) complexity, then the complexity
of our secure versions expressed in number of calls to the arithmetic functionality.
There, we consider the case of a graph with public structure and then with
private structure, meaning that not only the weight of each edge is kept secret,
but that the adjacency relation between vertices is kept private as well.

Several observations can already be made.

– The best implementations, using advanced data structures as dynamic trees
[17] or Fibonacci heaps [18], are definitely non-trivial to replicate in the se-
cure setting (see also discussion in Section 1.2 below). Their relevance is also
unclear for the relatively small size of the problems that we are addressing,
as they usually come with large constants.

– The overheads resulting from moving from the original algorithms to their
secure versions largely differ between algorithms: in the case of a public
structure for instance, we see either no difference, or an |E| factor or a |V |
factor depending on the algorithm.

– The overhead resulting from hiding the graph structure largely differs de-
pending on the algorithm and type of graph. For Bellman-Ford and Push-
Relabel, the difference essentially corresponds to always handling a complete
graph when the structure needs to be hidden. For Dijkstra however, the se-
crecy of the graph structure has no impact.

– While Bellman-Ford is traditionally less efficient than Dijkstra, this is not
true anymore (asymptotically at least) for our secure variants: Bellman-Ford
becomes substantially more efficient for sparse graphs (e.g., if |E| = O(|V |))
and the asymptotic complexities are similar for dense graphs.

The overheads in terms of number of protocol participants, round complex-
ity, . . . largely depend on the implementation of the secure arithmetic function-
ality, and are in line with traditional works.

Optimized Original Public Structure Secret Structure

Bellman-Ford |V ||E| |V ||E| |V ||E| |V |3
Dijkstra |E|+ |V | log |V | |V |2 |V |3 |V |3
Edmonds-Karp |V |2|E| |V ||E|2 |V ||E|2 |V |5

Push-Relabel |V ||E| log(|V |
2

|E|) |V |3 |V |2|E| |V |4

Table 1. Asymptotic complexities: original algorithms and secure versions with public
and private graph adjacency matrix.

Complexity: The Constants Matter. In order to challenge our algorithms in prac-
tice, we implemented them all using the Virtual Ideal Functionality Framework
(VIFF) of Geisler et al. [16], in the honest-but-curious model.

4 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

This allowed us to further investigate the constants hidden by the asymptotic
notations discussed above. This made particularly visible the difference of cost
between the different black-box primitives that we used: addition based on linear
secret sharing [19] comes for free (no communication involved), multiplication
is noticeable (it involves one secret sharing), and comparison (based on Toft’s
protocol [20]) is ≈ 165 times more expensive than a multiplication, something
that strongly contrasts with the execution time of traditional algorithms.

These differences have strong practical impact and motivated some trade-offs
as well.
– Our version of Dijkstra’s algorithm involves only |V |2 comparisons compared

to |V |3 (or |V ||E|) in Bellman-Ford. As a result of this, for dense graphs or
when the graph structure is secret, Dijkstra’s algorithm remains considerably
more efficient than Bellman-Ford’s, even when the structure of the graph is
public, provided that the graphs have a reasonably small size (a hundred
vertices).

– For sparse public graphs that contain a small number of paths from the
source to the sink, a variant of the Edmonds-Karp’s algorithm that relies
on an exhaustive public enumeration of the source to sink paths can be
considerably simpler and more efficient than a secure version of the breadth-
first search for augmenting paths that is performed in the original algorithm:
this allows trading expensive book-keeping and addressing operations for
more but much simpler rounds.
So, besides the fact that our work offers the first solutions for the secure

evaluation of various graph properties, we think that it raises several intriguing
complexity issues. Notably, we wonder whether the complexity gaps that we have
are inherent to the added security or if they can be improved.

1.2 Related Works

As mentioned above, the large majority of works on secure multi-party compu-
tation focused on functions whose evaluation execution flow is independent of
the secret inputs. There are important exceptions to this, however.
Branching Programs. Branching programs are decision procedures that, based
on some inputs and decision parameters such as thresholds, perform a specific
classification of the input. Secure versions of these programs, where a user does
not learn the branching program of the server while the server does not learn
the user’s inputs, have been considered in various works [21], [22], [23], [7], [24].
While these works share our goals of hiding the data path through which the
program is going, they do not aim at hiding the length of that path which, in
our case at least, could leak a substantial amount of information.
Shortest Path In The Two-Party Setting. Brickell and Shmatikov [25] addressed
the problem of solving some graph problems securely and their work is, as such,
the closest to ours. Substantial differences appear, though.

First, their security model is quite different from ours. Their protocols, which
are based on a privacy-preserving set union protocol, proceed by making their
outputs known to the participants progressively as part of the execution (e.g.,

Securely Solving Simple Combinatorial Graph Problems 5

edge by edge as the protocol runs). Even though this is not revealing more than
the eventual outcome, this makes their protocols unusable as sub-components
of other higher-level protocols that would rely on using these outputs as part
of their secret state. Revealing outputs part-by-part as the protocol runs might
also be problematic in applications in which some participants could abort the
protocol in the middle of its execution, based on what they have already learned.
Our protocols, on the other hand, can be freely used as subroutines, and one of
our secure max-flow algorithms will make use of a secure shortest-path algorithm.

Second, the graph problems they consider are different from ours as well.
They do not consider the maximum flow problem at all: their work focuses on
computing shortest distances, from a known source to all the vertices or for all
the vertex pairs, in a setting where all the participants assign a weight to all
edges. We further investigate the problem of computing the shortest path from
a single source to a single destination, which cannot be done using their set union
technique as it would reveal much more information than the specific distance
we are interested in.

Eventually, their protocols are not based on generic building-blocks, like the
arithmetic black-box functionality on which we rely. Specifically, their protocols
are designed for the two-party computation setting in the honest-but-curious
model. While these specifics allow them to develop techniques that are quite
efficient in this two-party setting, it is unclear how efficient a transposition of
their approach to the multi-party setting would be.
Efficient Secure Datastructures. The problem of computing securely on datas-
tructures has recently been investigated by Toft [12], in the case of a secure
priority queue, which he implements using a variation of bucket heap. The prob-
lem studied there shares similar flavors with those we address here: to compute
securely on structured data by keeping the actions independent of the inputs.
The computational overhead compared to the efficiency of the original bucket
heap is logarithmic, making it occupy an interestingly different spot in the list
of overhead examples discussed above.

Similar effects could also be achieved through the use of oblivious memo-
ries [26], [27].

Overview. Section 2 describes the building blocks we will use and our main
implementation choices. Section 3 describes our approach to the classical sin-
gle source and single-pair shortest path problems, and Section 4 describes our
approaches of the maximum flow problem.

2 Preliminaries

2.1 Black-Box Operations

Arithmetic Black-Box. We build our protocols on top of an ideal functionality
: the arithmetic black-box functionality FABB of Damg̊ard and Nielsen [11],
whose definition captures the properties we need.

This functionality allows n parties to securely store elements of a ring Zm, to
repeatedly perform the ring operations of addition and multiplication on these

6 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

elements, and to open the result of the computation when needed. Following
Toft [12], we consider a slightly extended and abstracted version of this func-
tionality that offers the possibility to perform secure comparison and consider
any possible ring. So, storing, opening, addition, multiplication and comparison
will be the only secure operations on which our protocols will rely. Following
the tradition, we will write [x] to address the version of x securely stored by
FABB , and denote the secure arithmetic operations on secret values in the nat-
ural way, e.g., [z]← [x] + [y] for the addition of two secrets. The actual protocol
implementing these operations depends on the details of the realization of this
functionality. Numerous MPC schemes can be used for that purpose [4,3,11] or,
for more recent approaches [28,29,30], depending on the security model that is
appropriate.

Graph Representation. Depending on the algorithm we are trying to compute
and on the part of the graph description that is part of the secret input, different
graph representation approaches will show to be useful.

In all cases, we will assume that the number of vertices in the graph is public
(or at least an upper bound on it). Depending on the setting, the adjacency
relationship between the vertices might be public or not. For instance, it is
natural to have it public if the graph represents the connections between places
on a map, but it might be desirable to keep it secret if the presence of edges
reveals the existence of transactions between competing companies.

A traditional structure for storing a graph consists in storing, with every
vertex, a list of its neighbors (and the weight of the corresponding edges). This
structure is quite efficient in terms of memory. However, it might be quite prob-
lematic from a security point of view, as it discloses the degree of each vertex.
A solution would be to tolerate the leakage of an upper bound on these degrees,
but that upper bound would be close to imply the storage of a complete graph
as soon as one single vertex is of high degree. Furthermore, even if the leakage
of the degree of the vertices is tolerated, algorithms that perform breadth-first
search on vertices and branch depending on the weight of edges could reveal a
lot of information. As a result, this graph representation can show to be very
effective in some cases, but completely inappropriate in others, even when the
graph structure is public.

A second traditional way of representing graphs is to store their adjacency
matrix, the elements of the matrix representing the weight of the edges between
vertices. This approach has the benefit of offering a storage that is independent
of the graph structure. While running our algorithms, we will often need to
perform some operations on a specific vertex designated by a secret index. This
will typically be performed by running that operation on all vertices, including
a canceling factor everywhere but on the vertex that needs to be treated. An
obvious way of testing whether we are working on the right vertex would be
to perform a test at each step. We actually use a more effective approach by
representing the index of the vertex i by a vector [i] ∈ {[0], [1]}1×n

where each
entry is [0] except for the i’th which is [1]. We can then access the weight of
the edge from vertex i to vertex j by computing the matrix product [i].[M].[j]t.

Securely Solving Simple Combinatorial Graph Problems 7

Protocol 1 provides a way to update an element in a shared list and it can
be easily extended to update an element in a shared matrix. This protocol also
exemplifies a common way of emulating a branching depending on a secret value:
the arithmetic operation in the loop is actually equivalent to computing if [i]j =
[1] then [l]j = [x].

Protocol 1: Update an element in a shared list and at a shared position

Input: A list [l] of length n, a shared index [i], a shared value [x].
Output: The list [l] with the update [l]i = [x].

1 for j ← 1 to n do
2 [l]j ← [l]j + [i]j · ([x]− [l]j);
3 end

For a graph with n vertices, this protocol allows retrieving a secret position
in the adjacency matrix in O(n2) multiplications instead of O(n2) comparisons,
which is considerably more efficient, even if it implies a considerable overhead in
storage (moving from 1 secret index to n secret bits). We note that, in all cases,
this approach implies treating the graph as if it were complete, which can be a
considerable waste of resources if the graph is actually sparse.

3 Privacy-Preserving Shortest Path Problem

The single-source shortest path problem is a major problem in graph theory. It
has several immediate applications. The typical one is finding the shortest way
to connect two cities on a road map where each city is represented by a vertex
and each road between two cities by an edge. The edge weights are the road
distances between cities. In this context, a user may then want to obtain driv-
ing directions without revealing neither his starting point nor his destination.
Another application is the one of two entities owning each a secret location in
a shared network and willing to compute the distance between them without
disclosing their location. We note that such a problem is worth solving even for
relatively small graphs. Consider for instance a routing network with a dozen
hubs in different European countries and three competing logistic companies
having each their own transportation costs for a defined set of roads. As costs
typically represent sensitive information that should not be disclosed to com-
petitors, being able to solve the shortest path problem securely for 3 parties and
a graph with a dozen of vertices is quite helpful. Similar problems happen for
network traffic on routers where a small number of big hubs is involved. Compet-
ing companies have to solve the shortest path to define routing scheme without
revealing sensitive information about internal network configuration.

Shortest path algorithms are also used as subalgorithms for more advanced
problems like the Chinese postman problem or the max-flow problem that we
address below: this highlights the importance of keeping our protocols compos-
able.

We investigate two standard algorithms for finding the single-source shortest
path in a graph with weighted edges: Dijkstra’s algorithm and Bellman-Ford’s

8 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

algorithm. The first one requires all edge weights to be positive, while the second
one only assumes there is no negative-weight cycle in the input graph. As the
non-secure version of all the algorithms that we treat is widely available [31], we
will only briefly outline them.

All our protocols assume that inputs are already stored in the FABB func-
tionality and give access to the stored outputs (that can be opened through
opening requests to FABB). This feature guarantees the composability of the
protocols. The way inputs and outputs are shared depends on the application:
they might come from a specific problem, or from the needs of a higher-level
protocol using this protocol as a sub-routine, for instance.

3.1 Bellman-Ford’s Algorithm

The algorithm of Bellman-Ford is particularly simple, making it a natural target
for building a secure version. This algorithm proceeds by repeatedly scanning
all edges, in search of adding edges that decrease the ongoing distance from
the source to the various vertices. If a pass over the edges did not improve the
current solution, or if the edges were scanned |V | times, the algorithm halts. An
interesting feature of this algorithm is that its flow of operations only depends
on the structure of the graph but not on the weight of the edges. Its drawback
is its time-complexity: its classical implementation runs in O(|V ||E|) time.

Protocol 2 (the SSP1 protocol) presents our secure shortest path protocol
based on Bellman-Ford. Note that h(e) and t(e) represent the head and tail
vertex of an edge e respectively. Also, note that > is a number agreed in advance
by the players as a higher bound for some calculations of the protocol. We refer
to Appendix A for discussion of the values of > and m in all our protocols.
Finally, note that updatevector refers to Protocol 1. The SSP1 protocol differs
from the original algorithm only in a limited number of aspects: a) the branching
corresponding to the discovery of a shorter path is handled on Lines 8–10 through
arithmetic operations as in Protocol 1, b) the early termination condition of the
Bellman-Ford algorithm, which is triggered if the inner loop happens to have no
effect during one pass, is removed as it could leak information. This does not
invalidate the correctness of the algorithm but only increases the running time.

The structure of this algorithm makes it easy to implement with either of the
two graph representations discussed above (list or matrix), making it possible
to fully exploit the sparsity of graphs when it is public (we use the matrix
representation if it has to be kept secret).

It can be seen that our implementation requires |V ||E| secure comparisons,
dominating the time required to perform 2|V ||E| secure multiplications and
5|V ||E| additions. These complexities grow to O(|V |3) when the graph structure
is secret, as the graph is then treated as complete (i.e., augmented with edges of
infinite weight). Very interestingly, this algorithm is the only one among those
we treated in which our solution does not raise any asymptotic overhead (when
the structure is public).

Securely Solving Simple Combinatorial Graph Problems 9

Protocol 2: SSP1 protocol based on Bellman-Ford’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a set of shared weights [w]e for each e ∈ E, and a share of the
source vertex [s] ∈ V .

Output: The list of immediate predecessors p and/or total distances d.
1 for i← 1 to |V | do
2 pi ← [0]; di ← [>];
3 end
4 updatevector([d], [s], [0]);
5 for i← 1 to |V | do
6 for e← 1 to |E| do
7 [y]← [d]t(e) − [d]h(e) + [w]e;
8 [x]← [y] < 0;
9 [d]h(e) ← [d]h(e) + [x] · [y];

10 [p]h(e) ← ([1]− [x]) · [p]h(e) + [x] · t(e);
11 end

12 end
13 If there was an update during the very last pass, solution is unbounded (∃

negative cycle). Open required output.

Security. The simulation of an execution of this protocol is immediate from the
simulators available for the different calls that can be made by the FABB func-
tionality: the simulators corresponding to each of the ’+’, ’·’ and ’<’ operations
can be invoked in turn, in an order defined by the protocol execution, and a
number of times that only depends on public values (|V | and |E|). The same
argument will apply to the other protocols we present in this paper, and we will
therefore not come back to it.

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm computes the shortest path from the source to all vertices
in the graph, that is, the shortest path tree rooted at the source. The algorithm
is greedy. At each iteration one vertex (the one with the smallest distance label)
is permanently updated to the status scanned.
Adapting Dijkstra. The fact that Dijkstra’s algorithm goes through the graph
in an order that depends on the weight of the edges makes it very difficult to
efficiently exploit the sparsity of a graph: our best solutions have all a complexity
that amounts to the one of a complete graph, and we therefore use the matrix
representation in all cases for our protocol.

Protocol 3 (the SSP2 protocol) presents our secure shortest path proto-
col based on Dijkstra. Note that updatevector refers to Protocol 1 and that
updaterow is the natural extension of updatevector for replacing a complete
row in a shared matrix. Protocol binarymin has been introduced by Toft in
[32] to obtain the minimal value out of a vector of shared values. It securely
computes a share of the minimal value, [min], along with a share of its index,

10 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

Protocol 3: SSP2 protocol based on Dijkstra’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a matrix of shared weights [M]i,j for i, j ∈ {1, ..., |V |} and a
source vertex [s] ∈ V .

Output: The vector of distances di and the matrix of predecessor [P]i,j for
i, j ∈ {1, ..., |V |}.

1 for i, j ← 1 to |V | do
2 [P]i,j ← [0]; [d]i ← [>]; [q]i ← [0];
3 end
4 updatevector([d], [s], [0]);
5 for i← 1 to |V | do
6 [d’]← [d] + [q];
7 [min], [k]← binarymin([d’]);
8 updatevector([q], [k], [>]);
9 for j ← 1 to |V | do

10 [a]← ([d] + [M]∗,j) · [k];
11 [c]← [a] < [d]j ;
12 [P]← updaterow([P], j, [P]j + [c] · ([k]− [P]j));
13 [d]j ← [d]j + [c] · ([a]− [d]j);

14 end

15 end
16 return [d], [P];

[k]. The protocol uses O(n) comparisons and multiplications. Its overall round
complexity is O(log(n)) rounds. Vector q records the status of each vertex. An
entry is equal to zero if the corresponding vertex has not been scanned yet. It is
updated to > as soon as the vertex has been scanned.

The main differences between the traditional and our secure version of Dijk-
stra’s algorithm happen in the inner loop: a) On Line 9, the loop goes through all
vertices instead of only considering the neighbors of the current vertex. In par-
ticular, this includes an always transparent step where we consider the current
vertex and gives a substantial overhead if a public sparse graph is considered.
b) On Lines 4 – 8 – 12, we need to go through all elements of a row or a vector,
even if we know that only one of them is going to be updated. Those two mod-
ifications contribute to the same effect: they increase the original complexity of
Dijkstra from O(|V |2) to O(|V |3). More precisely, the exact number of compar-
isons is 2|V |2 − 3|V | + 1 and the exact number of dot products (used for the
multiplication of vectors, costing |V | multiplications) is 2|V |2 − |V | for |V | ≥ 4.

As the comparison protocol we use requires 165 multiplications to compute
a comparison, the number of multiplications to compute the shortest path in a
complete tree is around 2|V |3 + 329|V |2 − 495|V |+ 165.

The switch from quadratic to cubic dominance is at around 165 vertices which
is precisely the number of multiplications used by a single comparison.

Our secure version of Dijkstra comes with an overhead of a factor |V | com-
pared to the original one, even when the graph structure can be considered as

Securely Solving Simple Combinatorial Graph Problems 11

public. We note that this was not the case in the work of Brickell [25] who consid-
ered running Dijkstra securely as well, but accepted to output the shortest paths
step by step. Besides the limitation that this brings when the protocol has to
be composed, we also observe that our algorithm can be used to solve problems
that could not be solved by Brickell’s approach, namely, computing the shortest
path between two specific vertices without leaking any other information: their
approach indeed leaks the shortest path to all vertices.

3.3 Implementation Prototype

We implemented our protocols over the Virtual Ideal Functionality Framework
to challenge their performance. We considered a 3-party execution in the in-
formation theoretic model with passive security: secret values are shared using
Shamir’s secret sharing, the BGW protocol is used for multiplication [2], and
Toft’s protocol is used for comparison [20]. These choices were made for sim-
plicity and ease of prototyping, though much more efficient protocols exist and
would have led to considerably shorter running times [28,30]. The computation
was performed on a single workstation equipped with an Intel Xeon CPUs X5550
(2.67GHz) and 24GB of memory, running a standard Debian Squeeze.

We ran the two shortest path protocols described above on complete graphs
of various sizes. This first showed that Protocol 2 can only be conveniently used
for graphs where |V ||E| ≈ 103 (a few minutes on a standard laptop): see Table 2.

Number of vertices 4 8 16 32 64 128

Execution times (in seconds)
SSP1 9 63 501 4003 31951 -
SSP2 9 13 50 217 1018 5622

Table 2. Execution times of Protocols 2 and 3 for a complete shortest path tree.

Our secure versions of Bellman-Ford and Dijkstra have approximately the
same complexity for complete graphs. However the quadratic number of com-
parisons makes it possible to run our secure version of Dijkstra on a 64-vertex
complete graph in roughly twice the time as taken by Bellman-Ford on a 16-
vertex graph, and we have been able to run it up to a 128-vertex complete graph
(i.e., counting 16256 directed edges) in a bit more than an hour.

While these timings might look fairly high, they still make it possible to solve
natural problems in a reasonable time. For instance, if the 3-party, 12-vertex
problem outlined above could be solved in around 30 seconds.

4 Maximum Flow

In an oriented graph where the edges have a constraint of capacity, the maximum
flow problem consists in finding the maximum number of units that can be car-
ried from a vertex called source to another vertex called sink. The flow through
an edge designates the number of units passing by it. This number cannot exceed
the capacity.

This problem has numerous classical applications. In the spirit of our pre-
vious examples, one of them could be competing transport companies willing

12 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

to determine the capacity they could reach if they decided to realize a joint-
venture. It is natural in such a context to expect that these companies will not
be willing to disclose their full network structure to each other. As in the case of
the shortest path, algorithms solving the maximum flow problem are also very
useful as subroutines for solving other problems. The minimum cut problem is
one such traditional example, which can be solved using O(|V |) invocations of
the maximum flow algorithm. Solving this problem is then useful to determine
where the weak points of the joint network would be.

Although we investigated many different algorithm for a transportation in
MPC, this paper only presents two secure protocols based on the Edmonds-
Karp’s and the Push-Relabel algorithms.

4.1 Edmonds-Karp’s Algorithm

The basic idea of the Edmonds-Karp’s (EK) algorithm is to find an augmenting
path in the residual graph that is the graph in which the edges are weighted by
their residual capacity, i.e., the capacity minus the current flow. Each augmenting
path increases the total flow so that the algorithm eventually terminates when
there are no augmenting paths left. The increase is monotonic and paths are
considered once only. Typically, the EK algorithm uses a breadth-first search to
find the next augmenting path.

The asymptotic complexity of the traditional EK algorithm is O(|V ||E|2),
which we can match securely (see Appendix B.) As we have seen in the case
of the shortest path problem, this complexity will be prohibitive even for very
small graphs if they are complete. It therefore makes sense to focus our attention
on (oriented) strongly sparse graphs, of which we consider the structure to be
public. More precisely, we consider graphs in which the number of paths from
the source to the sink is fairly small, e.g., bounded by a small polynomial in the
number of vertices.

The algorithm is given on input a list containing all the paths sorted in
a growing order of length, p = (p1, ..., pk) where k is the number of paths in
the graph. This list is not secret as the structure is not, and can therefore be
easily constructed in public. Our protocol based on Edmonds-Karp (the SMF1
protocol) is presented in Protocol 4.

The main differences between this protocol and Edmonds-Karp’s approach
are: a) the public enumeration of all the paths instead of building of a breadth-
first search for capacity augmenting paths, and b) the treatment of all the paths
as if they were augmenting.

The SMF1 protocol is correct as the set of all the augmenting paths is con-
tained in the set of all the paths p. Moreover, it ensures the confidentiality of the
edge capacities as no information is leaked about which path of p is augmenting
and which is not.

It is easy to see that the SMF1 Protocol requires O(k|V |) comparisons, as
the length of the longest path in the graph is bounded by |V | − 1, and O(k)
multiplications. This protocol makes a crucial use of the existence of a small
number of paths in the graph, something that we were not able to use in the

Securely Solving Simple Combinatorial Graph Problems 13

Protocol 4: SMF1 maximum flow protocol based on Edmonds-Karp’s al-
gorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a source vertex so ∈ V , a sink vertex si ∈ V , and a list p of
length k containing the paths between so and si sorted in a growing
order of length. A set of capacities [c]e and a set of flows [f]e initially set
to [0] for e ∈ E. ē is the edge opposite to e.

Output: The maximum flow value from so to si.
1 while |p| > 0 do
2 p← pop(p);
3 [r], [i]← binarymine∈p([c]e − [f]e);

4 [b]← [r] > 0;
5 [a]← [b] · [r];
6 for e ∈ p do
7 [f]e ← [f]e + [a];
8 [f]ē ← [f]ē − [a];

9 end

10 end
11 return

∑
e∈S

[f]e where S = {e ∈ E|h(e) = so};

SSP2 protocol for instance. It is however highly inefficient for dense graph and
would have a factorial complexity for complete graphs.

This protocol applies well to our previous example of the three competing
logistic companies trying to determine the max flow in their joint networks. If
we consider a case with 10 vertices and 37 different paths, the execution takes
less than a minute as shown in Table 3.

Number of paths 2 4 8 14 37 86 135

Number of edges 22 21 25 25 32 30 30

Execution times (in seconds) 3 6 9 18 40 94 148

Table 3. Execution times of Protocol 4 for 10-vertex graphs.

4.2 Push-Relabel Privacy-Preserving Implementation

The Push-Relabel algorithm, also called relabel-to-front when implemented with
a FIFO list, introduces two additional attributes for the vertices, the height and
the excess. An edge is called admissible if it goes from a higher to a lower
vertex. The algorithm alternatively pushes the excess along admissible edges
and increases the height of the vertices until all excess has been pushed to the
sink or back to the source.

The basic operation of the algorithm is Push/Relabel applied to a given
vertex. This operation pushes all the excess through incident admissible edges
(updating the excesses of incident vertices accordingly). Finally, in case not all
the excess has been pushed, the elevation of the vertex is minimally increased
so as to create at least one more admissible edge, and Push/Relabel terminates.

14 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

Throughout the algorithm a list L with vertices with positive excess (except
the source and the sink) is maintained. At each iteration, one vertex of L is
selected and Push/Relabel is applied. The algorithm terminates when the list
is empty. In the FIFO implementation, the next vertex of L to be treated is
selected in the FIFO order. This FIFO Push/Relabel algorithm terminates in
O(|V |3) operations.

Our protocol based on Push-Relabel is presented in Protocol 5. The main
differences between this protocol and the traditional Push/Relabel algorithm
are as follows : a) when Push/Relabel is applied to a vertex with zero excess,
no update of the elevation is performed at the end, b) in each phase, treat all
vertices except the source and the sink, in a fixed order agreed between the
players, and c) during each Push/Relabel operation applied to a vertex i, the
order in which the edges (i, j) are considered is fixed and agreed in advance
between the players. It is clear that these changes do not modify the correctness
of the original algorithm.

Protocol 5: A phase of the SMF2 protocol based on Push/Relabel

Input: A complete graph G = (V,E) where V is the list of vertices and E the
list of edges. A vertex i to be treated, a vector of elevations [h], a
matrix of residual capacities [R] and a vector of excesses [e].

Output: Update of the elevations [h], the residual capacities [r] and the
excesses [e].

1 [δ]← 2|V | ; for j ← 1 to |E| do
2 [α]← [h]i > [h]j ;
3 [x]← min([e]i, [R]i,j);
4 [y]← [α].[x];
5 [R]i,j ← [R]i,j − [y]; [R]j,i ← [R]j,i + [y];
6 [e]i ← [e]i − [y]; [e]j ← [e]j + [y];
7 [δ]← min([δ], [h]j + 2|V | · [α]);

8 end
9 [α]← [e]i > 0;

10 [h]i ← [h]i · (1− [α]) + ([δ] + 1) · [α];

Moreover, it can be verified that the relabel-to-front algorithm terminates in
maximum 4|V |2−10|V |+12 complete phases. Therefore we obtain an ”all-cases”
complexity of O(|V |2|E|), both in comparisons and multiplications. Note that
this does not match the FIFO complexity, because we scan all edges at each
pass, even when the excess of the tail vertex is zero.

The complexity of this algorithm remains lower than the one of the original
Edmonds-Karp and it is asymptotically better than the optimized version of
Edmonds-Karp presented in Section 4.1 for graphs with vertices of high degree.
However, the running time of Protocol SMF2 remains very high. Experiments
showed that the use of a traditional halting criterion at the end of each SMF2
phase (i.e. nothing has been pushed) results in dramatic running time improve-
ments. However it also demonstrated a huge variability (the algorithm may halt
after a single phase), which suggests that a substantial amount of information

Securely Solving Simple Combinatorial Graph Problems 15

could be derived from it. Quantifying this information is left for future work,
and its impact is likely to depend on the application.

5 Conclusion

We proposed two protocols for securely computing shortest paths as well as two
protocols for securely computing maximum flows in graphs. Besides the interest
that these protocols have in the numerous contexts in which their insecure coun-
terparts have found applications in the past (possibly relying on a trusted third
party), our investigation raised interesting complexity gaps between centralized
algorithms and secure protocols, ranging from a constant to something growing
like the number of vertices in the graphs. It is then natural to wonder whether
these gaps, when they arise, can be decreased. Various avenues appear for that
purpose:
– Design efficient datastructures adapted to the investigated problems. For

instance, the recent work of Toft [12] on priority queues could lead to con-
siderably more efficient versions of our secure shortest-path protocols. In
particular, whether data structures similar to dynamic trees or Fibonacci
heaps are implementable in a secured setting without revealing the execu-
tion flow remains an open question.

– Investigate whether secure comparisons, which often are a bottleneck, can be
traded for other, cheaper, arithmetic operations. This raises unusual ques-
tions from a traditional algorithmic point of view, as comparisons are usually
considered as basic operations.
Considering other standard combinatorial problems could also provide new

insights. The protocols and results presented in the paper are prototypes that
validate the theoretical complexity evaluations. While the running times given
for the protocols look unpractical for large graphs, this issue must be put in per-
spective. Indeed, an implementation for concrete applications should definitively
be improved by relying on lower level programming languages and optimized un-
derlying libraries. Various optimization techniques (see, e.g., [28,30]) would lead
to performance increases of several orders of magnitude, as was observed in the
case of the AES during the last 3 years for instance (see [29] and the references
within).

Acknowledgements

This research was supported by the WIST Walloon Region project CAMUS.
Edouard Cuvelier and Sophie Mawet are funded by a FRIA grant of the F.R.S.-
FNRS. Mathieu Van Vyve is supported by the Belgian IAP Program initiated
by the Belgian State, Prime Minister’s Office, Science Policy Programming. The
scientific responsibility is assumed by the authors. The authors are grateful to
Claudio Orlandi and the anonymous reviewers for their constructive feedback.
They also sincerely thank Sylvie Baudine for her help in improving the paper.

16 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

References

1. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, IEEE (1982) 160–164

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, ACM (1988) 1–10

3. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC, ACM (1988) 11–19

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, ACM (1987)
218–229

5. Bogetoft, P., Damg̊ard, I., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: Financial Cryptography. Volume 4107 of LNCS., Springer (2006) 142–147

6. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-autority secret-
ballot elections with linear work. In: EUROCRYPT. Volume 1070 of LNCS.,
Springer (1996) 72–83

7. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: ESORICS. Volume 5789 of LNCS., Springer (2009) 424–439

8. Sadeghi, A.R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: ICISC. Volume 5984 of LNCS., Springer (2009) 229–244

9. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party com-
putation is practical. In: ASIACRYPT. Volume 5912 of LNCS., Springer (2009)
250–267

10. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: CRYPTO, Springer-Verlag (1996) 104–113

11. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty compu-
tation from threshold homomorphic encryption. In: CRYPTO. Volume 2729 of
LNCS., Springer (2003) 247–264

12. Toft, T.: Secure data structures based on multi-party computation. In: PODC,
ACM (2011) 291–292

13. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: CCS, ACM (2008) 257–266

14. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: privacy-preserving
aggregation of multi-domain network events and statistics. In: Proceedings of the
19th USENIX conference on Security. USENIX Security’10, USENIX (2010)

15. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Proceedings of the 13th ESORICS. Volume 5283 of
LNCS., Springer (2008) 192–206

16. Geisler, M.: Cryptographic protocols: theory and implementation. PhD thesis,
Aarhus University Denmark, Department of Computer Science (2010)

17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3) (June 1983) 362–391

18. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3) (1987) 596–615

19. Shamir, A.: How to share a secret. Commun. ACM 22(11) (1979) 612–613

20. Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis,
Department of Computer Science, Aarhus University (2007)

Securely Solving Simple Combinatorial Graph Problems 17

21. Kruger, L., Jha, S., Goh, E.J., Boneh, D.: Secure function evaluation with ordered
binary decision diagrams. In: ACM CCS, ACM (2006) 410–420

22. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Theory
of Cryptography, TCC 2007. Volume 4392 of LNCS., Springer (2007) 575–594

23. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS. CCS ’07, ACM (2007) 498–507

24. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A.R., Schneider, T.: Privacy-
preserving ECG classification with branching programs and neural networks. IEEE
TIFS 6(2) (June 2011) 452–468

25. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest
model. In: ASIACRYPT. Volume 3788 of LNCS. Springer (2005) 236–252

26. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
rams. J. ACM 43(3) (May 1996) 431–473

27. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious ram without
random oracles. In: Proceedings of the 8th TCC, Springer-Verlag (2011) 144–163

28. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: EUROCRYPT. Volume 6632 of LNCS., Springer
(2011) 169–188

29. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.: Implementing aes via
an actively/covertly secure dishonest-majority mpc protocol. In: Security and
Cryptography for Networks. Volume 7485 of LNCS., Springer (2012) 241–263

30. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: CRYPTO. Volume 7417 of LNCS.,
Springer (2012) 643–662

31. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. 3rd edn. The MIT Press (2009)

32. Toft, T.: Solving linear programs using multiparty computation. In: Financial
Cryptography. Volume 5628 of LNCS., Springer (2009) 90–107

A Bounds

The size of the ring Zm has to be chosen carefully to prevent overflows. For each
protocol presented in this paper, we provide the bounds of m and the value of
> in Figure 1. These bounds depend on numbers such as the maximum weight
w or the maximum capacity c allowed for the edges. These maxima are agreed
in advance by the players. Remark that > is smaller than m. Most comparison
protocols require a much larger m than the values to compare. This dependence
is taken into account via a function f .

Protocol > > m >

SSP1 |V | ·w f(>)

SSP2 |V | ·w |V | · f(>)

Protocol > > m >

SMF1 - |V | · f(c)

SMF2 - max(2|V |, |V | · f(c))

SMF3 c max(f(>+ c), |V | · f(c))

Fig. 1. Minimal bounds on > and m to avoid overflows.

B Protocols

Protocol 6 presents the complete Edmonds-Karp’s implementation of the max-
imum flow problem in MPC. The binarymin function refers to the function

18 A. Aly, E. Cuvelier, S. Mawet, O. Pereira, M. Van Vyve

introduced by Toft in [32] to securely compute the minimum between different
values. The Bellman-Ford function is a natural adaptation of Protocol 2 that
outputs the shortest path from the source to the sink in the form of a vector
of {[0], [1]} where a [1] at the i-th position indicates that edge i belongs to the
augmenting path. Note that the first augmenting path p is public and given in
input. We refer to Figure 1 for the value of >.

Protocol 6: SMF3 maximum flow protocol based on complete Edmonds-
Karp’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a source vertex so ∈ V , a sink vertex si ∈ V . A list of positive
capacities [c]i for each edge. The first augmenting path p.

Output: The maximum flow value from so to si.
1 for i← 1 to |E| do
2 [f]i ← [0]; [w]i ← [1];
3 end
4 for i← 1 to |E| do
5 for j ← 1 to |E| do
6 [c]j ← (1− [p]j) · >+ [c]j ; [f]j ← [p]j · [f]j ;
7 end
8 [r], [k]← binaryminj∈{1,...,|E|}([c]j − [f]j); [b]← [r] > 0; [a]← [b] · [r];
9 for j ← 1 to |E| do

10 [f]j ← [f]j + [p]j · [a]; [f]j̄ ← [f]j̄ − [p]j · [a]; [cond]← [c]j − [f]j = 0;
[w]j ← [cond] · |V |+ (1− [cond]) · [w]j ;

11 end
12 [p], [d]← SSP1(G, [w], so, si);

13 end
14 return

∑
e∈S

[f]e where S = {e ∈ E|h(e) = so};

The main differences between protocol and the traditional Edmonds-Karp
algorithm are as follows :
– Each iteration go through all the edges but only those which form the current

path are updated.
– The SSP1 protocol is used instead of the Breath-First-Search protocol to

find the smallest augmenting path because there is a serious overhead in a
straightforward secure implementation of the BFS. To run the SSP1 protocol,
SMF3 maintains a list of shared weights [w] for the edges where the weight of
an edge is [1] when it remains in the residual graph and it is [|V |] otherwise.
It is straightforward to see that the asymptotic complexity of the algorithm

is O(|V ||E|2) as the original algorithm. The number of comparisons is |V ||E|2 +
|E|2 + |E| and the number of multiplications is |V ||E|2 + 5|E|2 + |E|.

	Securely Solving Simple Combinatorial Graph Problems

