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Abstract. An n-player (t, δ)-secure robust secret sharing scheme is a
(t, n)-threshold secret sharing scheme with the additional property that
the secret can be recovered, with probability at least 1− δ, from the set
of all shares even if up to t players provide incorrect shares. The existing
constructions of robust secret sharing schemes for the range n/3 ≤ t <
n/2 have the share size larger than the secret size. An important goal
in this area is to minimize the share size. In the paper, we propose a
new unconditionally-secure robust secret sharing scheme for the case
n ≥ 2t+ 2 with share size equal to the secret size. This is the minimum
possible size as dictated by the perfect secrecy of the scheme. We discuss
our results and propose directions for future research.

1 Introduction

Secret Sharing is one of the most important tools in modern cryptography. The
concept and the first realization of secret sharing were presented independently in
[24] and in [3]. In a secret sharing scheme, there exists a dealer, n participants,
and possibly a reconstructor. The dealer splits a secret s ∈ S, into n pieces,
called shares, and sends one share to each participant over a private point-to-
point channel. An access structure is the set of subsets of participants that
are qualified to recover the secret. In a (t, n)-threshold access structure, where
1 ≤ t < n, any t + 1 or more participants can reconstruct the secret, and the
knowledge of t or less shares leaves the secret s indeterminate. A (t, n)-threshold
secret sharing scheme is said to be perfect if no subset of t or less shares can leak
any information about the secret s where the leakage is in information theoretic
sense and without assuming any limit on the computational resources of the
adversary.

In its basic form, secret sharing assumes that the corrupted participants
are passive (or semi-honest) and follow the protocol during the reconstruction
phase. Extensions of this basic model considers cases that the corrupted partici-
pants deviate from the protocol [19, 27, 22, 4, 6, 20]. In these extensions different
requirements such as cheater detection [4], cheater identification [20] and un-
trusted dealer [8] have been considered. A minimal robust requirement when
participants are allowed to submit incorrect shares, is that the set of all shares,
some possibly corrupted, can recover the correct secret. Perfect secret sharing
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schemes that satisfy this additional property are called robust secret sharing
schemes.

Robust secret sharing schemes provide a powerful tool for building secure and
reliable distributed data storage systems. Users’ data (files) can be broken into
pieces (shares) and stored on multiple servers such that privacy of data against
servers is provided, and the system ensures recovery of the data when a subset
of servers corrupt their stored shares, accidentally or intentionally. In recent
years, systems and architectures based on this primitive have emerged [16, 28,
11] which shows importance of robust secret sharing in practice. Robust secret
sharing has also direct application to Secure Message Transmission (SMT). In
an unconditionally secure SMT [10, 12, 13], a sender is connected to a receiver
through n wires such that up to t of which are controlled by an adversary.
The goal of an SMT protocol is to ensure that the message sent by the sender
is received correctly by the receiver, and no information about the message is
leaked to the adversary. Good robust secret sharing schemes lead to good secure
message transmission schemes [18]. Robust secret sharing schemes may also be
seen as an stepping stone towards the construction of verifiable secret sharing
(VSS) schemes [8], in which, in addition to the corrupted players, the dealer is
dishonest and may hand out inconsistent shares. Finally robust secret sharing is
an important primitive for secure multi-party computation.

1.1 Motivation

In perfect threshold robust secret sharing schemes, in addition to the requirement
of perfect threshold secret sharing schemes,

– any t+ 1 shares reconstruct the secret, and any t shares give no information
about the secret,

it is also required that,

– the secret can be reconstructed with high probability from the set of all
shares, even if up to t shares are incorrect.

The reconstruction may be with, or without, a reconstructor, and may include
one or more rounds of communication [9, 7]. Also, reconstruction failure may be
defined differently [9, 7]. These variations of the model needs careful considera-
tions in comparing schemes and their performances. A framework for consider-
ing robust secret sharing is provided in [23], which includes schemes in both the
information-theoretic and computationally secure settings.

In this paper we shall follow the model of [7], where during the reconstruction,
all the n players communicate their shares to a trusted third party called the
reconstructor. Based on the received shares (some of them are incorrect), the
reconstructor then produces an output s′, which with a probability at least 1−δ
is the same as the original secret s.

Important efficiency measures for robust secret sharing schemes are the com-
munication cost (number of communicated bits) of reconstruction [9] and the
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share size measured by the number of bits required to represent a share. In this
paper we focus on the latter measure. It is well known that in any perfect se-
cret sharing scheme, the length of a share σi is at least the length of the secret,
that is log |S| [25]. Secret sharing schemes that meet this lower bound are called
ideal [25]. Shamir secret sharing meets this lower bound and is ideal. This lower
bound also holds for robust secret sharing scheme which are perfect secret shar-
ing schemes. So a natural question is how much redundancy, that is extra share
length compared to the secret length, is needed for robustness.

It follows from the theory of Reed-Solomon error correcting codes that Shamir
secret sharing scheme is robust if (and only if) t < n/3 [1] and so no increase in
the share size is needed to obtain robustness. On the other hand, the robust secret
sharing is impossible if t ≥ n/2: the (t, n)-threshold access structure requires at
least (t+ 1) correct shares for the recovery of the original secret. The interesting
range is n/3 ≤ t < n/2. In this range, all existing schemes have share sizes that
are strictly larger than the secret size. The problem is naturally more difficult
when t is maximal in the range n/3 ≤ t < n/2 i.e., n = 2t + 1 (when n is odd)
and n = 2t + 2 (when n is even). In particular, for the range n/3 ≤ t < n/2,
there is no known robust secret sharing scheme such that,

– the maximum length of individual share size of a participant is the same
as the secret size (thus no increase in the share size), and the probability
of correctly recovering the secret from the set of all shares is at least 1 − δ,
where δ is a negligible value.

This is irrespective of the computational complexity of reconstruction which can
be exponential in n. The result of this paper shows that it is possible to keep
the share size same as the secret size when n ≥ 2t+ 2.

1.2 Our Contribution

We consider the model of [7] in which reconstruction is by a trusted reconstruc-
tor, and propose a new construction of robust secret sharing which is based on
Shamir’s secret sharing and has share size equal to the secret size, which is the
minimum required by perfect secret sharing schemes. That is, the extra robust-
ness property is obtained without increasing the share size. The system’s public
parameter, in addition to what is required by Shamir’s scheme, includes a struc-
tured matrix that has O(n) random elements. This matrix can be distributed
during share distribution, or stored on an authenticated and publicly accessi-
ble storage. The system works for n ≥ 2t + 2 and effectively uses the share of
the extra participants as the verification information. We note that if n is even,
then n = 2t + 2 is the minimum required number of participants. For n odd,
the scheme works for n = 2t + 2 and so constructing a scheme without share
increase for n = 2t+ 1 is an open problem.

The reconstruction is one round and requires participants to send their shares
to the reconstructor. The reconstruction is secure against a non-rushing adver-
sary (this is properly defined in Sect. 2.2), and the reconstruction procedure
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may output an incorrect secret with a negligible probability. The reconstruction
algorithm however is inefficient and requires that all subsets of size t + 1 of n
shares be considered. Construction of schemes with the above properties and
efficient reconstruction, remains an open problem.

1.3 Related Work

Cheating detection and providing robustness against cheaters, is an important
problem in secret sharing schemes. Different models and constructions have been
proposed for this problem over the year [22, 4, 6, 19, 27, 20]. Robustness in the
sense of recoverability of the secret when some shares are wrong is a basic prop-
erty that ensures the secret is not lost because of the share corruption. Robust
secret sharing with unconditional security was first considered by McEliece and
Sarwate [19] where they pointed out the close relationship between Shamir se-
cret sharing scheme and Reed-Solomon coding. Little is known about robust
secret sharing for the range n/3 ≤ t < n/2. The first scheme for the range
n/3 ≤ t < n/2 is due to Rabin and BenOr [22]. Their scheme consists of Shamir
secret sharing, but enhanced by means of an unconditionally secure message au-
thentication code. The constructions in [9, 7] represent the two main approaches
to this problem and provide the best performances in terms of trade-off results
between share size and the reconstruction complexity (see Sect. 5 for their de-
scription). In [9], the redundancy of the share size is exactly two field elements
(here n = 2t + 1, secert size is one field element, and the reconstruction model
is different). The reconstruction time is however exponential in n. The scheme
in [7] has the smallest share size (see Sect. 6) among schemes with efficient
(polynomial) reconstruction.

2 Preliminaries

We begin by formally defining the model of robust secret sharing. The “defini-
tions” are taken verbatim from [7].

2.1 Robust Secret Sharing

A robust secret sharing scheme can be described by two interactive protocols,
Share and Rec, where Share involves a dealer D and n players P1, . . . , Pn, and Rec
involves the n players and a reconstructor R. The dealer is connected to every
player by a secure, untappable channel. There is also a broadcast channel that
can be used by everyone in the system. An n-player robust secret sharing scheme
for a secret space S consists of two phases, the sharing and the reconstruction
phase, specified by two protocols Share and Rec respectively, described below.
Let [n] = {1, . . . , n}.

– Share: The dealer D takes as input a secret s ∈ S, locally computes shares
σ1, . . . , σn, and for every i ∈ [n], sends the i-th share σi privately to player
Pi.
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– Rec: During reconstruction, player Pi, i ∈ [n], communicates, possibly by
means of several synchronous communication rounds, σi to the reconstructor
R. The reconstructor R uses the received shares to produce an output s′,
which is supposed to be the original secret s.

2.2 Adversarial Capabilities

We now specify the capabilities (and limitations) of the adversary who has un-
bounded computing power. The goal of the adversary is to make the reconstruc-
tor output a value different from the original secret s.

– During the sharing phase, the adversary remains inactive, and does not learn
any information about the secret as the shares are distributed using private
channels between players and the dealer.

– After the sharing phase, the adversary can adaptively corrupt up to t of
the players Pi, where t is the threshold parameter. The corruption can
be done between communication rounds and continue as long as the total
number of corrupted players does not exceed t. D or R are assumed incor-
ruptible. Once a player Pi is corrupted, the adversary learns Pi’s share σi,
and from then on, the adversary has full control over Pi. The corruptions
being adaptive means that after each corruption, the adversary can decide
on whom to corrupt next depending on the shares he has seen so far.

– During the reconstruction phase, the adversary sees the communications
between players Pi and the reconstructor R. Furthermore, he controls the
information that the dishonest players send to the reconstructor R. Recon-
struction in general has multiple rounds. In every communication round, for
every corrupted player, the adversary decides what this player should send
to R. A rushing adversary can choose these values after observing what
honest players send to R in the current round. A non-rushing adversary
selects the corrupted shares before the start of the reconstruction phase.

2.3 Security

An n-player robust secret sharing scheme (Share,Rec) is (t, δ)-secure if the fol-
lowing properties hold for any distribution of s ∈ S and for any adversary as
specified above:

1. Privacy: Before Rec starts, the adversary has no more information about
the shared secret s than he had before the execution of Share.

2. Reconstructability: At the end of Rec, the reconstructor R outputs s′ = s
with probability at least 1− δ.

It is well known that in any perfect secret sharing scheme, the bit-size of
a share σi is at least the same as the bit-size of secret, that is log |S| [25].
Much research effort focused on finding the least required redundancy to achieve
robustness. Let σi denotes the share for player Pi. The redundancy (also known
as overhead) is measured by the quantity maxi{log σi} − log |S|. For t < n/3,
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one can use Reed-Solomon error correcting codes to construct a robust secret
sharing scheme with efficient reconstruction algorithm and no redundancy in
the share size i.e., the share size is the same as the secret size [1]. On the other
hand, for t ≥ n/2 there is no solution to the problem (the (t, n)-threshold access
structure requires at least t + 1 correct shares for the recovery of the original
secret). In this work we construct a robust secret sharing scheme for n = 2t+ 2
with no redundancy in the share size. The construction works for any t in the
range n

3 ≤ t ≤
n
2 − 1.

3 The Proposed Scheme

The scheme of [9] can be understood as being obtained from a secret sharing
scheme that allows error detection, i.e., that detects if a set of t + 1 shares
contains some incorrect ones (but can not necessarily tell which ones). It was
analyzed in [15] that any secret sharing scheme with error detection [5, 21, 27]
can be transformed into a robust secret sharing scheme by looping over all sets of
size t+ 1. This line of thinking has provided schemes with low share redundancy
and the work in [9] represents the best so far. It is apparent that any such
scheme will suffer from the same exponential complexity and our new proposal,
being constructed on this line, is no exception, but what is interesting is that
the proposed scheme employs a technique that leverage some extra public values
to eliminate redundancy in the shares.

3.1 The Scheme

Let t and n are positive integers such that n = 2t+2. Let Fq be a finite field with
q elements, where q is a prime power with q > n. We now present an n-player
robust secret sharing scheme over Fq which is (t, δ) secure and individual share
size is same as secret size.

– Share:
• Let s ∈ Fq be a secret.
• The dealer randomly chooses a polynomial f(x) ∈ Fq[x] of degree at

most t such that f(0) = s and computes si = f(i) for all i ∈ [t+ 1].
• D choose n vectors of length t + 1, (ri1, . . . , ri(t+1)) ∈ (Fq)n, 1 ≤ i ≤ n

such that any t+ 1 of them are linearly independent (see below for such

a selection) and for every i ∈ [n], he computes σi =
∑t+1
j=1 rijsj ∈ Fq.

• For every i ∈ [n], the dealer D sends to player Pi the share σi (just one
field element). The n vectors {(ri1, . . . , ri(t+1))}1≤i≤n are part of system’s
public parameters. The dealer can send the public parameters to users,
using the broadcast channel. Alternatively the public parameters can be
stored on a publicly accessible authenticated bulletin board.

– Rec:
• Every player sends σi to the reconstructor R.
• To reconstruct the secret, the reconstructor does the following for every

subset of t+ 1 players.
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∗ He reconstructs (s′1, s
′
2, . . . , s

′
t+1) using t+ 1 shares by solving t+ 1

equations in t+ 1 variables.
∗ He checks if

∑t+1
j=1 rijs

′
j = σi for at least one of the remaining t+ 1

shares, and halts if it holds.
• R then computes (using Lagrange interpolation) a polynomial f(x) ∈
Fq[x] of degree at most t and outputs s = f(0).

3.2 Remarks

Standard methods are available to choose n vectors of length t+ 1 over Fq with
the property that any t+ 1 of them are linearly independent. For completeness
we describe some of them here. Let z1, . . . , zn, w1, . . . , wt+1 ∈ Fq be such that
the zi’s are distinct, the wj ’s are distinct, and zi + wj 6= 0 for all i, j. Define

ri =

(
1

zi + w1
, . . . ,

1

zi + wt+1

)
, 1 ≤ i ≤ n .

One can check that any t + 1 vectors chosen among these n row vectors are
linearly independent as the matrix so formed has non-zero determinant (see Ch
11, [17]). In particular let M denote the matrix with rows r1, . . . , rt+1, then

det(M) =

∏
i<j(zj − zi)(wj − wi)∏

i,j(zi + wj)
.

The number of field elements that are distributed publicly is equal to n+ t+ 1.
Another way of selection is to choose an n× (t+ 1) Vandermonde matrix which
also has the property that any t + 1 rows are independent. A Vandermonde
matrix of size n × (t + 1) can be described by n elements and in this case only
n field elements are distributed publicly.

4 Security

4.1 Perfect Secrecy

The secret is the constant term of a random polynomial of degree at most t.
The t+ 1 evaluations of the polynomial, {s1, . . . , st+1}, are independent and are
needed to reconstruct the secret. We will show that any group CP = {Pi1 , . . . , Pit}
of corrupted participants will be completely uncertain about at least one value
from {s1, . . . , st+1}. This is true because the group CP has t shares {σi1 , . . . , σit}
and these shares correspond to t equations,

M · (s1, . . . , st+1)T = (σi1 , . . . , σit)
T ,

where M is the t × (t + 1) matrix consisting of the t row vectors ri1 , . . . rit
associated with the corrupted users, and ‘T’ denotes matrix transpose.

Let M1, . . . ,Mt+1 be the column vectors of M . As Mi’s constitute a set
of t + 1 t-dimensional vectors, they are linearly dependent. Thus there exists
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at least one column vector, without loss of generality say M1, such that M1

belongs to the subspace 〈M2, . . . ,Mt+1〉. So there exists a (t + 1)-dimensional
vector b = (b1, . . . , bt+1) such that MbT = 0 and b1 6= 0. Thus, we have

(σi1 , . . . , σit)
T = M · (s1, . . . , st+1)T = M · ((s1, . . . , st+1)T + α(b1, . . . , bt+1)T )

for all α ∈ Fq. Hence, given any β1 ∈ Fq, there exists (β1, . . . , βt+1) ∈ (Fq)t+1

such that M · (β1, . . . , βt+1)T = (σi1 , . . . , σit)
T . Therefore, the participants in

CP cannot rule out any element of Fq as a possibility for s1. Thus, there exists q
values for s1 and distinct values for s1 leads to distinct polynomials. This makes
f(0) indeterminate.

ut

4.2 Reliability

Theorem 1. Let k be a security parameter. For any positive integer n and t such
that n = 2t + 2, and any finite field Fq with k = dlog2 qe, the pair (Share,Rec)
forms an n-player (t, δ)-robust secret sharing for message space Fq with

δ ≤
√
t+ 1

2k−n
.

Proof. Consider the state of the reconstruction phase right before the recon-
structor R has received the shares from the players. We may assume that at this
stage the adversary has corrupted t players. Thus R has now n shares of which
at most t are corrupted. To reconstruct the secret, R does the following for every
subset of t+ 1 players.

(a) He computes (s′1, s
′
2, . . . , s

′
t+1) using t+ 1 chosen shares (σ′i1 , σ

′
i2
, . . . , σ′it+1

)
(by solving t+ 1 equations in t+ 1 variables).

(b) He then checks if
∑t+1
j=1 rijs

′
j = σi for at least one of the remaining t + 1

shares, and halts if it holds.

Consider an arbitrary set A = {σ′i1 , . . . , σ
′
it+1
} of t+ 1 shares submitted during

the reconstruction phase. Let us assume that j (0 ≤ j ≤ t) of them are corrupted.
Let M be the matrix with rows ri1 , . . . , rit+1

such that,

M · (s′1, . . . , s′t+1)T = (σ′i1 , . . . , σ
′
it+1

)T .

Then (s′1, . . . , s
′
t+1)T = σ′i1M̃1 + · · ·+σ′it+1

M̃t+1, where the M̃i’s are the columns

of the inverse matrix M−1. For a fix set of values of the j corrupted shares,
there are qt+1−j solution vectors to the above equality. Therefore the probabil-
ity that the solution vector is a solution to one of the remaining equations is
t+1

qt+1−j , the maximum value is t+1
q when j = t. Thus, taking into account union

bound over all subsets of size t+ 1 leaves us with the failure probability ≤
√
t+1

2k−n(
as (t+ 1) ·

(
n

t+ 1

)
≤
√
t+ 1 · 2n when n = 2t+ 2 and k = dlog2 qe

)
. ut

The efficiency comparison for the proposed scheme with the known schemes
(described below) is given in Sect. 6.
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5 Known Schemes and Possible Extensions

Previous works on robust secret sharing schemes with unconditional security for
the range n/3 ≤ t < n/2 can be broadly divided into two classes. We now briefly
recall the best scheme from each class.

The first one is due to Cramer et al. [9], based on an idea by [5]. The scheme
works as follows. Using standard Shamir secret sharing, the dealer shares inde-
pendently the actual secret s ∈ Fq, a randomly chosen field element r ∈ Fq,
and their product p = s · r. To reconstruct the secret, the reconstructor does
the following: for every subset of t+ 1 players, he reconstructs s′, r′ and p′ and
checks if s′ · r′ = p′, and halts and outputs s′ if it is the case. One can show that
for any subset of t+ 1 players: if s′ 6= s then s′ · r′ 6= p′ except with probability
1/q. Thus for a field of size 2k, taking into account union bound over all subsets
of size t + 1, gives a robust secret sharing scheme with failure probability 2k−n

and shares of size 3k bits (consisting of three field elements).
The second scheme is given by Cevellos, Fehr, Ostrovsky and Rabani [7], and

is based on the scheme of Rabin and BenOr [22] with an elegant twist to its
reconstruction algorithm. This scheme’s description is given below.

– Share:
• Choose a random polynomial f(x) ∈ Fq[X] with degree at most t such

that f(0) = s.
• Compute the Shamir shares s1 = f(x1), . . . , sn = f(xn), where xi’s are

distinct points in Fq.
• For every pair i, j ∈ [n], choose a random key keyij ∈ K and compute
τij = MAC(keyji, si), where MAC : Fq × K → T be an ε-secure MAC
[29, 30, 7] with message space Fq.

• For every i ∈ [n], the player Pi is given the share

σi = (si, τi1, . . . , τin, keyi1, . . . , keyin).

– Rec:
• First Round: Every player Pi sends si and τi1, . . . , τin. to the recon-

structor R.
• Second Round: Every player Pi sends keyi1, . . . , keyin to R.
• Local Computation:
∗ For every pair i, j ∈ [n], R sets νij to be 1 if the share si of player
Pi is accepted by the corresponding key of player Pj , i.e., if τij =
MAC(keyji, si), and else to 0.
∗ R computes the largest set I ⊆ [n] with the property that

∀i ∈ I : |{j ∈ I|νij = 1}| =
∑
j∈I

νij ≥ t+ 1 ;

in other words, every share of a player in I is accepted by at least t+1
players in I. Clearly I contains all honest players. Let c = |I|−(t+1)
be the maximum number of corrupt players in I.
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∗ Use the Berlekamp-Welch algorithm [2, 14] to compute a polynomial
f(x) ∈ F[X] of degree at most t such that f(xi) = si for at least
(t+1)+ c

2 players i in I. If no such polynomial exists then R outputs
⊥; otherwise, he outputs s = f(0).

The Share algorithm of this scheme is the same as the well-known scheme of
Rabin and Ben-Or [22] which relies on message authentication. The redundancy
in share size for Rabin and Ben-Or scheme consists of 3n elements from the field
where the secret is drawn from. The scheme uses a message authentication code
with short tags and keys and with the resulting weak security. The short tags and
keys result in the required saving (improvement over Rabin and Ben-Or scheme)
in the share size. The weakened security of authentication (and so higher chance
of forging) is compensated with a more sophisticated reconstruction procedure
which runs in polynomial time and results in an exponentially small failure
probability. The overhead of the share size depends directly on the exponent of
the failure probability.

Assuming the same share distribution as Rabin and Ben-Or’s scheme [22], one
may consider further reduction in authentication information and improvement
in the reconstruction, to obtain shorter share sizes. In Sect. 5.1 we explore one
such possibility by employing list decoding algorithm for Reed-Solomon codes
[26] in the reconstruction algorithm of [7]. Our goal is to reduce δ, the error
probability of the decoder, which will translate into smaller share size. Our anal-
ysis shows that this modification does not reduce δ and so the share size cannot
be further reduced.

5.1 Using List Decoding to Improve Decoding Error in [7]

We begin by describing a natural modification to the Cevallos et al.’s Scheme.

– Share: Same

– Rec:

• First Round: Same

• Second Round: Same

• Local Computation: Step 1 and 2 are the same as above. Recall that
c = |I| − (t+ 1) is the maximum number of corrupt players in I.

∗ Step 3 of Cevallos et al. scheme: Use Berlekamp-Welch to com-
pute a polynomial f(x) ∈ F[X] of degree at most t such that f(xi) 6=
si for at most c

2 players in I.
∗ Modification: Use list decoding algorithm for [n = 2t + 1, k =
t+1, d = n−k+1 = t+1] Reed-Solomon codes [26] that corrects up
to n−

√
nt of errors, to compute a (list of) polynomial(s) f(x) ∈ F[X]

of degree at most t such that f(xi) 6= si for at most 1

1+
√

t
t+1+c

(c+ 1)

players in I.
∗ Find correct f from the decoding list and output s = f(0).
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5.2 Robustness:

The analysis is similar to [7]. Define the following sets: A ⊂ [n] is the set of
corrupted players that have handed in modified Shamir shares, and P ⊂ [n] is
the set of corrupted players that have handed in the correct Shamir shares. It
holds that |A| + |P| = t. The set H = [n]\(A ∪ P) is the set of uncorrupted
players.

The set I computed during reconstruction contains H and P with certainty.
Thus, the reconstruction procedure is guaranteed to output the correct secret

if at most 1
θ · (p + 1) players i ∈ A end up in I, where p = |P| and θ =

√
t
n .

Indeed, if |A∩I| ≤ 1
θ · (p+ 1), then the requirement for list-decoding is satisfied

(|I| = t + 1 + c = t + 1 + p + e where e = |A ∩ I| ≤ 1
θ · (p + 1) and thus

e = 1
θ · (p+ 1) = 1

1+θ (p+ 1
θ (p+ 1) + 1) = 1

1+θ (c+ 1)).

We need to find the probability P [|A ∩ I| > 1
θ · (p + 1)]. It is sufficient to

consider the case p ≤ θ
1+θ · t; indeed if p > θ

1+θ · t and thus p ≥ θ
1+θ · (t− 1) then

obviously |A| ≤ t− θ
1+θ · (t−1) = 1

1+θ · (t+ 1) and hence P [|A∩P| ≤ 1
θ · (p+ 1)].

Thus

δ =

θ
1+θ ·t∑
p=1

P [|A ∩ I| > 1

θ
· (p+ 1)] .

For any p in the range 1 ≤ p ≤ θ
1+θ ·t, we first compute P [|A∩I| > 1

θ ·(p+1)].

Let us assume that 1
θ ·(p+1) is an integer. In order to bound the above probability,

it is convenient to introduce the following random variables:

– For every pair i, j ∈ [n], we define the binary random variable Vij that
specifies if the player Pi’s share and his submitted tag associated with player
Pj are accepted by player Pj ’s key. Note that, all the Vij with i ∈ [n] and
j ∈ H are independent. Further P [Vij = 1] ≤ ε for all i ∈ A and j ∈ H.

– For every i ∈ A the random variable

Ni =
∑
j∈H

Vij = |{j ∈ H|Vij = 1}| ,

i.e., the number of honest players that accept Pi’s incorrect share. Note that
since the Vij ’s are independent for all i ∈ [n] and j ∈ H, so are all the Ni’s.
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P [|A ∩ I| > 1

θ
· (p+ 1)] = P [

(
|A ∩ I| = 1

θ
· (p+ 1) + 1

)
∪ · · · ∪

(
|A ∩ I| = t− 1

θ
· (p+ 1)

)
]

≤ P [|A ∩ I| = t− 1

θ
· (p+ 1)] (best strategy for adversary)

= P [∩i∈A\P(Ni = 1)]

=
∏

i∈A\P

P [Ni = 1]

=
∏

i∈A\P

P [∃H0 ⊆ H : (|H0| = 1) ∧ (∀j ∈ H0 : Vij = 1)]

≤
∏

i∈A\P

 ∑
H0⊆H:|H0|=1

P [∀j ∈ H0 : Vij = 1)]


≤

∏
i∈A\P

((t+ 1) · ε)

= ((t+ 1) · ε)t− 1
θ ·(p+1)

We can now compute the robustness probability as follows:

δ =

θ
1+θ ·t∑
p=1

P [|A ∩ I| > 1

θ
· (p+ 1)]

≤

θ
1+θ ·t∑
p=1

((t+ 1) · ε)t− 1
θ ·(p+1)

≤ ((t+ 1) · ε)
θ

1+θ ·t−
1
θ (1 + ((t+ 1) · ε) 1

θ + ((t+ 1) · ε) 2
θ + · · · ) [assuming, ε ≤ 1

t+ 1
]

≤ 2((t+ 1) · ε)
θ

1+θ ·t−
1
θ

Note that the bound on δ is similar to the bound while considering the
Berlekamp-Welch setting. Also note that we have not included the analysis for
the required probability to find the correct polynomial from the list of polyno-
mials output by the list decoding algorithm.

6 Efficiency Comparison

In this section we compare the efficiency of our scheme, in terms of relation
among the following three parameters: secret size, the share size and the relia-
bility in the reconstruction, with the schemes of Cramer et al. [9] and Cevallos
et al. [7]. Note that our scheme works for n ≥ 2t+2 while the other two schemes
work for n ≥ 2t + 1. To share a k-bit secret among the n players using our
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proposed scheme, the failure probability is at most
√
t+1

2k−n
, and for the Cramer et

al. scheme it is 1
2k−n

. The share size for the two schemes are k bits and 3k bits,
respectively.

Understanding the relation for [7] is more subtle. Here the failure probability
depends on an extra parameter. Let λ be a parameter that can be chosen inde-
pendent of the secret size k. The two parameters λ, k are used in the following
MAC function which has been used in [7]:

MAC : GF (2k)× (GF (2k/λ))2 → GF (2k/λ) .

Sharing a k-bit secret among the n players using the scheme [7], results in the
failure probability of at most 1

2n
k
λ

−n log(n·λ)
. For λ ≤ n, the failure probability is

less than for the other schemes. Let us define ` = n kλ−n log(n ·λ). The share size

for [7] is k+ 3n kλ = k+ 3(`+n log(n ·λ)). Clearly [7] has efficient reconstruction
complexity and improved failure probability. However the share size is higher
than the other two schemes.

Table 1. Comparison Table

Scheme Secret size
(in bits)

Share size (in bits) Rec Com-
plexity

δ Public
Parameters

[9] k 3k Exp. in n 2−(k−n) Nil

[7] k k+3(`+n log(n·λ)) Poly. in n 2−(n k
λ
−n log(n·λ)) Nil

Proposed
Scheme

k k Exp. in n
√
t+ 1 · 2−(k−n) n field ele-

ments

The last column for public parameters represents the elements that are re-
quired in addition to the interpolating points for Shamir’s secert sharing scheme.

7 Conclusion

The problem of the minimum share size for robust secret sharing has received
considerable attention in recent years. In this paper, we proposed and analyzed
a new robust secret sharing scheme for which the share size of participants is
the same as the secret size. This is the minimum possible value for the share
size of a perfect secret sharing scheme and hence also the least possible share
size for robust secret sharing. The result is interesting as it means that the
extra robustness property can be obtained with no extra cost on the share size.
However the scheme works only for n ≥ 2t+ 2 and effectively uses the share of
one extra honest participant as the verification information. The reconstruction
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algorithm is exponential in the number of players. Construction of schemes with
efficient reconstruction in our setting, and also robust secret sharing schemes
with share size equal to the secret size for n = 2t+ 1, remain open problems.
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