Avoiding Theoretical Optimality to Efficiently
and Privately Retrieve Security Updates

Justin Cappos
NYU Poly
jcappos@poly.edu

Abstract. This work demonstrates the feasibility of building a PIR sys-
tem with performance similar to non-PIR systems in real situations. Prior
Chor PIR systems have chosen block sizes that are theoretically opti-
mized to minimize communication. This (ironically) reduces the through-
put of the resulting system by roughly 50x. We constructed a Chor PIR
system called upPIR that is efficient by choosing block sizes that are the-
oretically suboptimal (from a communications standpoint), but fast and
efficient in practice. For example, an upPIR mirror running on a three-
year-old desktop provides security updates from Ubuntu 10.04 (1.4 GB of
data) fast enough to saturate a T3 link. Measurements run using mirrors
distributed around the Internet demonstrate that a client can download
software updates with upPIR about as quickly as with FTP.

1 Introduction

Each year, thousands of vulnerabilities in software are discovered and fixed. To
fix a vulnerability, a computer will request and install a security update. How-
ever, the request to retrieve a security update is very much a public action. Most
software updaters do not encrypt the request for a security update in any way
and the request itself is often directed to an untrustworthy party like a mirror.
For example, Cappos [1] set up an official mirror for popular Linux distributions
using dubious credentials and rented hosting. The official mirrors received re-
quests for security updates (and thus a notification that the requesting system
is unpatched) from a large number of computers including banking, government,
and military computers. Thus the act of fixing a security vulnerability ironically
also notifies potential attackers that the client has a security vulnerability!

Fortunately, Private Information Retrieval (PIR) [2] addresses this issue.
There are now myriad schemes proposing how clients can retrieve information
from a database without disclosing which information is requested [2-5]. The
academic literature has primarily optimized these systems by improving their
theoretical properties [6-9], primarily to reduce communications overhead.

The biggest open problem related to PIR systems is how to make them
practical. An academic panel titled “Achieving Practical Private Information
Retrieval” lamented that the performance of existing PIR systems makes them
unsuitable for practical use [10]. Recently, Sion suggested that many PIR tech-
niques are so inefficient that it is faster to simply transmit all data stored on the
server to the client [11]. More recently, Olumofin and Goldberg [12] have shown

faster practicality results (especially with Chor PIR); however, these results are
still much slower than non-PIR systems.

We demonstrate that it is possible to build a practical PIR sys-
tem that provides performance similar to that of non-PIR production
systems. Our system, upPIR uses the Chor multi-server PIR scheme [2], which
uses XOR instructions that can be efficiently computed on modern hardware.
By carefully choosing the block size to match the processor’s cache size, upPIR’s
throughput is substantially faster than existing results. (This is opposed to prior
work which has focused on reducing communication complexity.) upPIR allows
clients to retain information-theoretic privacy while providing performance sim-
ilar to popular HTTP and FTP servers.

2 Software Updaters

Software Updater Architecture. The architecture of software update sys-
tems (including upPIR) consists of three parties. The software vendor, such
as Ubuntu or Microsoft, creates a set of updates and bundles them into a re-
lease. The vendor also creates some metadata that describes the release, called
a manifest. The release is obtained and copied by a set of mirrors. For economic
and configurability reasons, mirrors are an important and essential part of the
software update landscape. Unfortunately, it is trivial for a malicious party to
register as an official mirror and receive requests from clients, including requests
for security updates [1].

Software Update Contents. The size and number of items stored by a
mirror vary over software projects, ranging between .5GB and 4.3GB for recent
versions of popular Linux distributions. The size of the security updates for a dis-
tribution is several orders of magnitude smaller than the full mirror data which
contains normal updates. In this work we focus on distributing security updates
and leave private distribution of complete software mirrors for future work. Fur-
ther details about the suitability of PIR for software updates are provided in a
tech report [13].

3 Threat Model

In our threat model, a client may contact many mirrors, including those that
may be honest-but-curious. Our goal in this work is to prevent a mirror from
knowing which software update is being retrieved by a vulnerable client. We
assume that:

— The vendor is creating valid updates that the client wishes to retrieve.

— A non-malicious mirror may fail at any time.

— A malicious party may operate one or more mirrors. These mirrors may share
or publicize any information they receive.

— An adversary may be able to observe all traffic sent over the network. This
is consistent with a malicious access point or ISP.

4 Architectural Overview

Vendor. The vendor produces a set of updates that it wishes to package into
a release and provide to clients. It also provides a list of mirrors to clients. The

vendor generates a manifest that contains metadata about the updates provided
in the release including secure hashes of the files. The release provided by a
vendor conceptually breaks the updates into equally sized blocks. If this were
not done, then performing an XOR of all updates together causes every XORed
chunk of data to be the size of the largest update. This would effectively mask
the size of the update being retrieved, but would be very inefficient if there is a
wide distribution of update sizes. In our implementation, the vendor selects the
block size when the manifest is created. (Section 5.3 discusses how to choose an
efficient block size).

Mirror. An upPIR mirror obtains the files for the release from the ven-
dor using rsync or another file transfer mechanism for distributing updates to
mirrors. Following this, the mirror reads in all of the software updates in the
release and stores them in one contiguous memory region. (The order of the
software updates in memory is specified in the manifest file.) The mirror uses
the manifest to validate each block. The mirror then notifies the vendor’s server
that it is ready to serve blocks to clients. The mirror provides the vendor with
a public key to prevent a man-in-the-middle from viewing client requests. When
a client sends a string of bits to the mirror, the mirror will XOR together all
blocks with a 1 in their position of the client’s request string. The mirror then
sends the result back to the client (which is the size of one block). This response
over an encrypted channel and is signed by the mirror’s private key to provide
non-repudiation. Note that the mirror can concurrently serve (non-private) FTP
and HTTP requests.

Client. A client first contacts the vendor’s server to obtain the latest manifest
and mirror list. From the manifest, the client can determine which blocks of the
release it needs to retrieve in order to receive its update. The client also has some
value N that represents the number of mirrors that would have to collude to
compromise the client’s privacy. To retrieve a single block, the client generates
N — 1 cryptographically suitable random strings. The client derives the Nth
string by XORing the other N — 1 random strings together and flipping the bit
of the desired update. Each string is sent to a different mirror over an encrypted
channel (to prevent eavesdropping on the strings). Each mirror returns a block
consisting of the specified blocks XORed together. The mirror signs the request
and response in its reply to allow the client to demonstrate to a third party when
a mirror is corrupt or malicious. If multiple blocks are desired, the procedure is
repeated.

5 Evaluation

This section compares the impact of different block size choices. Our focus is on
examining whether the theoretically optimal block size from a communications
perspective [12] (where the block size is the square root of the database size)
results in good throughput. We also examine the performance of upPIR, on real
data sets and in a realistic deployment using the block size we recommend. Since
mirrors are often set up using outdated server hardware or in a VM on shared
resources. The different machines used are as follows:

0.5

== |ocal
—— emulab 90%
«= ec2 large / 80%|

== ec2 xlarge /
03 Y

e

o
S

s —

Update Efficiency
o
2
R

Time (seconds) to Get Sum

(- E—-
40%
30%
~—x
20% OpenSuse
Theoretically Optimal «— Ubuntu
10%
| — Fedora
0.0, .
T ¢ ¥ g g g § g @ s e g ¢ § & & & ¢
2 2 3 2 e a3 = ~ 3 & & ¥ ® 8 & % Z 3T 3 B
n = o © I 1y — 9

— ~ wn
Block Size in Bytes Block Size

Fig. 1: Time to fetch one block against the Fig. 2: Space efficiency of updates with
Ubuntu release on multiple machines various block sizes

— ec2 large and ec2 xlarge are Amazon EC2 instances [14].

— emulab is an three-year-old Emulab node with an Intel E5530 CPU with
an 8MB L2 cache and 12GB of RAM on a virtual 100Mbps LAN [15, 16].

— local is an undergraduate student’s three-year-old PC with an Intel E5506
CPU with a 4MB L2 cache and 6GB of RAM on a shared 100Mbps LAN.

5.1 Mirror XOR Microbenchmarks

Figure 1 demonstrates the time it takes to produce a block of data when a
mirror serves the Ubuntu 10.04 data. We generated 10 random bit strings of the
appropriate size and then measured the amount of time the mirror spent XORing
the relevant update blocks together. Notice that the theoretically optimal block
size from a communications standpoint [12] has essentially the same speed as
block sizes up to IMB. Both a 1MB and 2MB block size allow local and emulab
to produce blocks quickly enough to saturate a T3 link. Once the block size
increases to 2MB, the throughput no longer increases linearly with the block
size due to data and code not fitting entirely in L2 cache. Producing a 1MB
block in the same time as the theoretically optimal block size results in about a
50x increase in throughput.

The release size is an important factor in speed because larger releases contain
more blocks. To explore the impact of the release size, we fixed the block size to be
1MB and then varied the release size on ‘emulab’ (not shown) The performance
scales at the same rate as the release size until the release no longer fits in
memory. Once the release exceeds the size of RAM, the performance drops by
over an order of magnitude as disk latency comes into play (not shown). Our
results show that upPIR scales linearly as the release size grows provided the
data served fits within memory.

5.2 The Impact of Block Size on Efficiency

The previous discussion showed how quickly a mirror could produce XOR blocks.
However, there is a difference between useful data and data. If a mirror can pro-

B time to generate keystring
114Mbp 1.0 network time

~ OpenSuse EEl time to perform XOR
9smbps| | =—= Ubuntu
- Fedora

0.8

76Mbps|

38Mbps|

Update Goodput
n
g
=
z
R

Time (seconds) by Cause
o
o

19Mbps| Theoretically Optimal 0.2
- —
— ™ -} 4 V4 ¥
o~ < ©
m ©o ﬁ
Block Size in Bytes
Fig. 3: Goodput for an average sized up-
date in three releases. Fig. 4: Time to privately fetch one block.

duce a 1MB block in .1 second or a 2MB block in .15 second, from a throughput
standpoint, the 2MB block size is superior. However, if the client wants a 1MB
update but must retrieve 2MB of data to get it, then 1MB of the space is wasted.
In essence, the data efficiency is the amount of retrieved data that is useful.
Figure 2 shows how changing the block size impacts efficiency for different
data sets. The lines represent different update sizes (or data sets) and illustrate
the performance difference when block size is varied. The values given were
calculated by dividing the size of the release by the amount of data that a client
would have to download to obtain every update in it one update at a time using
our PIR scheme. This figure 2 demonstrates that the amount of useful data
within a block decreases rapidly as the block size increases over 2MB. This is
to be expected since larger blocks imply that there is more wasted space when
retrieving an update. For example, between 70-85% of update data is unneeded
when using 8MB blocks, but less than 5% is unneeded with 64KB blocks.

5.3 Choosing a Block Size to Optimize Goodput

One decision the vendor makes when creating the manifest for a release is to
choose the block size. As we previously saw, this choice greatly impacts both
the mirror XOR performance and the client’s goodput. (Goodput is defined as
the desired bytes per second, so ignores padding and packet headers.) In order
to determine how to optimize the mirror’s goodput, one can combine the mirror
XOR time and the data efficiency to compute the goodput of the mirror.
Figure 3 shows how the goodput varies based on the throughput of the mirror
and the space efficiency of the block size. This chart is generated by retrieving
an average sized update from three distributions on the system ‘local’. (Other
systems show qualititatively similar results.) This graph shows that the goodput
is optimal when block size is between 1MB to 2MB for each distribution. As
a result, these block sizes seem to be the most efficient for this system. The

theoretically optimal from a communications standpoint (the square root of the
distribution size) has one to two orders of magnitude less throughput.

5.4 Controlled Macrobenchmarks

Figure 4 shows where time is spent retrieving a block from a mirror on emulab.
First of all, the time to generate the cryptographically suitable random string
is only paid on the client side of the connection. Similarly, the time that is
spent XORing content is only performed by the mirror. The communication
time is perceived by both systems. When the block size is small, the client’s
time to generate the string incurs a non-negligible cost. For larger block sizes,
the network communication time is the dominant factor. For example, for a
4MB block size, the XOR takes about 200 ms, and the retrieval time is nearly 1
second. The theoretically optimal block size from a communications standpoint
(about 38KB) has about 100 times slower throughput than a 2MB block.

5.5 Deployment Location Protocol| Time

To understand the performance of up- gg_gzz: Eggg; E;gp 16;12

PIR in realistic environment's, we de- US-West (EC2) |upPIR |1.2s
ployed our software on machines around [GoEi (EC2) |HTTP |L5s
the world. We used our machine ‘local’ |yq mast (EC2) |FTP 215
as an Ubuntu 10.04 vendor with a 2MB |yS East (EC2) |upPIR |[3.1s
block size, three EC2 instances in ei- [EU-West (EC2) [HTTP [2.7s
ther the US East, US West, or EU West |EU-West (EC2) |FTP |4.5s
availability zones as mirrors, and ran the |EU-West (EC2) |upPIR [4.1s
client at the University of Washington. For [US Mirrors HTTP |1.6s
the worldwide setting, we ran one mir- |US Mirrors FTP 2.1s
ror in each availability zone. We com- Worldwide (EC2)[upPIR [3.5s |
pared the time to download the 1.5MB]
libc6-prof_2.12.1-Oubuntu6_i386.deb pack- Table 1: Ubuntu update times.
age using upPIR, HTTP (apache), and FTP (vsftpd) on the same EC2 instances.
For comparison’s sake, we also downloaded the same file using FTP and HTTP
from every available official Ubuntu mirror inside the United States.

Table 1 shows the result of distributing updates via upPIR and other mech-
anisms. The first thing to observe is that HT'TP is slightly faster than FTP. We
believe that this is because FTP uses more back and forth communication than
HTTP (or upPIR) and therefore suffers the most from latency. HTTP is faster
than upPIR, which is expected because the client is downloading 2MB of data
from three mirrors instead of 1.5 MB from one mirror. Despite the additional
information downloaded, upPIR’s time is comparable to FTP on the same hard-
ware. However, unlike HTTP and FTP, upPIR retrieves the update privately.
Since our upPIR client downloads from three mirrors, even if two mirrors collude,
they do not learn which update the upPIR client is retrieving.

6 Related Work

Impracticality results from researchers including Sion [11], Yoshida [17] and Sas-
saman [18] reveal inefficiencies in existing PIR schemes. Perhaps most inter-

esting is Sion’s argument that many types of computational PIR are presently
impractical and, given hardware trends, unlikely to improve from a performance
perspective [11]. He argues that it is faster to transfer the entire database than
to perform PIR with a large class of proposed schemes.

Olumofin and Goldberg [12] recently provided performance results for a PIR
system that does not use the primitives mentioned as impractical in Sion’s prior
work. Olumofin’s resulting system is shown to be one to three orders of magni-
tude more efficient than transferring the entire database. They use the theoret-
ically optimal block size in their analysis, so their reported performance results
are significantly slower. For example, for a 2GB database, they produce a 46KB
block in just over 1 second (roughly 370Kbps). upPIR produces a 1MB block
in .2 seconds from a 2GB data store, showing throughput of roughly 40Mbps:
two orders of magnitude higher throughput. We contacted the authors and dis-
covered that their Chor implementation is similar to ours in performance when
given the non-theoretically optimal block size.

Similarly, Melchor [19] provides a fast PIR implementation that uses lattices
instead of the XOR-based primitives in our work. The authors mention they
aimed to maximize throughput by choosing experimental data that fit exactly
within cache (instead of using realistic data sets). As a result, they retrieved
3MB results from a 36MB database to achieve their 230Mbps speed number.
On our system with comparable hardware (‘local’) [20], our implementation can
produce results for a 36MB database at over 1Gbps. This demonstrates that
careful block size choice results in far greater throughput improvements.

Another common way to try to speed up PIR is to use specialized hard-
ware. Proposals have suggested leveraging GPUs [19], secure co-processors [21]
or oblivious RAM [22]. These results show promise, but our work demonstrates
that it is possible to achieve excellent performance simply with universally de-
ployed hardware (commodity CPUs).

7 Conclusion

This work demonstrates that in PIR systems, the theoretically optimal block
size (for minimizing communications cost) can be far less efficient than larger
block sizes in practice. In fact, it is possible to construct a PIR system with
performance similar to production non-PIR systems. We chose to motivate and
test upPIR by privately distributing security updates on commodity hardware
and show this has performance similar to FTP. Our source code is available at
https://uppir.poly.edu.

References

1. Cappos, J., Samuel, J., Baker, S., Hartman, J.: A Look in the Mirror: Attacks on
Package Managers. In: CCS 2008, New York, NY, USA, ACM (2008) 565-574

2. Benny Chor and Oded Goldreich and Eyal Kushilevitz and Madhu Sudan: Private
Information Retrieval. Journal of the ACM 45 (1998) 965-982

3. Ding, X., Yang, Y., Deng, R., Wang, S.: A new hardware-assisted PIR with
O(n) shuffle cost. International Journal of Information Security 9 (2010) 237-252
10.1007/s10207-010-0105-2.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20. :

21.

22.

Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
STOC. (1997) 294-303

Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997. (oct 1997) 364 —373
Beimel, A., Ishai, Y., Kushilevitz, E., franois Raymond, J.: Breaking the O(n
1/(2k1)) Barrier for Information-Theoretic Private Information Retrieval. In:
FOCS 2002. (2002) 261-270

Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: EUROCRYPT’99, Berlin, Heidelberg,
Springer-Verlag (1999) 402-414

Asonov, D., Freytag, J.C.: Almost Optimal Private Information Retrieval. In:
PETS 2002, Springer (2002) 209-223

Ambainis, A.: Upper bound on communication complexity of private information
retrieval. In: ICALP ’97, London, UK, Springer-Verlag (1997) 401-407

: Achieving Practical Private Information Retrieval (Panel @ Securecomm 2006)
http://www.cs.sunysb.edu/~sion/research/PIR.Panel.Securecomm.2006/.
Sion, R.: On the Computational Practicality of Private Information Retrieval. In:
NDSS ’07. (2007)

Olumofin, F.G., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: Financial Cryptography. (2011) 158-172

Cappos, J.: Avoiding Theoretical Optimality to Efficiently and Privately Retrieve
Security Updates (full version). Technical Report TR-CSE-2013-01, Department
of Computer Science and Engineering, NYU Poly (February 2013)

: AWS Instance Types http://aws.amazon.com/ec2/#instance.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-
bler, M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for
Distributed Systems and Networks. In: Proc. 5th OSDI, Boston, MA (Dec 2002)
255-270

: Emulab d710 Node Type Information https://www.emulab.net/shownodetype.
php3?node_type=d710.

Yoshida, R., Cui, Y., Shigetomi, R., Imai, H.: The practicality of the keyword
search using PIR. In: ISITA 2008. (dec. 2008) 1 -6

Sassaman, L., Preneel, B., Esat-cosic, K.U.L.: The Byzantine Postman Problem:
A Trivial Attack Against PIR-based Nym Servers. Technical report, ESAT-COSIC
2007-001 (2007)

Melchor, C., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P.: High-Speed Private
Information Retrieval Computation on GPU. In: SECURWARE ’08. (aug. 2008)
263 —272

Compare of Intel E5506 to E5345 http://ark.intel.com/Compare.aspx?ids=
37096, 28032.

Khoshgozaran, A., Shirani-Mehr, H., Shahabi, C.: SPIRAL: A Scalable Private
Information Retrieval Approach to Location Privacy. MDMW 2008

Williams, P.; Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS ’08, New York, NY,
USA, ACM (2008) 139-148

