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Abstract. Anonymous communication systems are subject to selective denial-
of-service (DoS) attacks. Selective DoS attacks lower anonymity as they force
paths to be rebuilt multiple times to ensure delivery, which increases the oppor-
tunity for more attack. We present a detection algorithm that filters out com-
promised communication channels for one of the most widely used anonymity
networks, Tor. Our detection algorithm uses two levels of probing to filter out
potentially compromised tunnels. We probabilistically analyze our detection al-
gorithm and show its robustness against selective DoS attacks through simulation.
We also analyze the overhead of our algorithm and show that we can achieve bet-
ter security guarantee than the conventional Tor path selection algorithm, while
adding only approximately 5% bandwidth overhead to the Tor network. Finally,
we validate our design with experiments using the live Tor network.
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1 Introduction

Anonymous communication was first introduced in 1981 with Chaum’s seminal paper
on “Untraceable electronic mail, return addresses, and digital pseudonyms” [14]. Since
then, many researchers have concentrated on building, analyzing and attacking anony-
mous communication systems such as Tor [18], I2P [4], Freenet [3]. In this paper we
concentrate on Tor [18], one of the most widely used low-latency anonymity networks,
which conceals users’ identities and activities from surveillance and traffic analysis. Tor
provides confidentiality and privacy to users of various types ranging from ordinary in-
dividuals to business personnel, journalists, government employees and even military
personnel [8]. Currently, Tor has over 3000 relays all around the world and it is used by
hundreds of thousands of people every day [7, 19, 21].

Users’ identities, however, can become exposed when multiple relays are compro-
mised. By default, Tor uses three relays and an attacker who can gain control of the
entry and exit relays is capable of compromising user identity using timing analysis
[20, 25]. Moreover, malicious nodes can perform a selective denial-of-service (DoS) at-
tack [12, 13] where malicious relays drop circuits if they cannot compromise them. This
increases the probability of such a path being built and as a result lowers anonymity.
The selective DoS attack is particularly useful for an attacker with moderate resources;
as one potential example, the Dutch ministry of Justice and Security proposed pass-
ing a law which would enable the law enforcement office to launch any form of attack
(i.e., selective DoS could one form of attack) on any system in order to gather evidence



[1]. So some form of mechanism is needed to ensure secure path construction in the
presence of compromised/controlled relays.

Danner et al. [15] showed that it is possible to identify relays mounting selective
DoS using exhaustive probing. The intent is to periodically carry out these probes
and blacklist the misbehaving relays; however, the total number of probes required is
prohibitive–3 times the size of the network at a minimum, and many more (typically
retrying each probe 10 times) to account for non-malicious failures. So, their approach
seems practical for a centralized design, but we wanted to create a local mechanism to
defend against selective DoS. By using probabilistic inference, we can make do with
orders of magnitude fewer probes and thus our approach is practical to be executed at
each individual client. We perform simulations and real world experiments to show the
effectiveness of our detection mechanism.

2 Background

2.1 Tor Network

Tor [18] is an anonymous communication network that allows users to make TCP con-
nections to Internet sites without revealing their identity to the destination or third-party
observers. We briefly explain the main components of Tor relevant to this work. To ini-
tiate an anonymous TCP connection, a Tor user constructs a circuit (also known as a
tunnel or path) comprised of several Tor relays. The relays form a forwarding chain that
sends traffic from the user to the destination, and vice versa. Circuits typically involve
three relays: the entry, middle, and exit. The traffic contents are protected by a layered
encryption scheme [24], where each relay peels off a layer while forwarding. As a re-
sult, any individual router cannot reconstruct the whole circuit path and link the source
to the destination. The relays in a circuit are chosen following specific constraints [17].
Each user selects a small, fixed number (currently 3) of entry relays that are used for
all circuits. These relays are called guard relays [23, 28]; their use is designed to de-
fend from the predecessor attack [29]. To choose the exit relay, the user picks from
among those relays that have an exit policy compatible with the desired destination.
After these constraints, the relays for each position are chosen randomly, weighted by
their bandwidth 1.

Tor aims to provide low-latency traffic forwarding for its users. As a result, as traffic
is forwarded along a circuit, timing patterns remain discernible, and an attacker who
observes two different relays can use timing analysis to determine whether they are
participating in the same circuit [20, 25, 27, 30]. So, to link a Tor user to a destination,
it suffices to observe the entry and the exit relays of a circuit. Standard security analysis
of Tor [18, 27] shows that if t is the fraction of relays that are observed, an adversary
will be able to violate anonymity on t2 of all of the circuits. Note that, due to bandwidth-
weighted path selection in Tor, t is best thought of as the fraction of total Tor bandwidth

1 Guard and/or exit relays are underweighted when chosen as middle node to improve the overall
balancing of load, however, these details are not key to our discussion.



that belongs to relays under observation2. The security of Tor, therefore, relies on the
assumption that a typical adversary will not be able to observe a significant fraction of
Tor relays. The easiest way to observe relay traffic is to run your own relays as there is
no barrier to entry other than Internet connectivity and sufficient bandwidth.

2.2 Selective Denial of Service in Tor

An adversary who controls a Tor relay can perform a number of active attacks to in-
crease the odds of compromise [12, 13]. One approach, which is the focus of this work,
is selective denial of service [13]. A compromised relay that participates in a circuit
can easily check whether both the entry and exit relays are under observation. If this is
not the case, the relay can “break” the circuit by refusing to forward traffic. This will
cause the user to reformulate a new circuit for the connection, giving the adversary an-
other chance to compromise the circuit. A simple analysis shows that this increases the
overall fraction of compromised circuits to t2

t2+(1−t)3 > t2, because only circuits with
compromised entry and exit relays (t2) or circuits with no compromised relays ((1−t)3)
will be functional, and out of those t2 will be compromised. E.g., if t = 0.2, selective
DoS increases the fraction of compromised circuits by 81.25%. The use of guard nodes
changes the analysis somewhat; compromised guards can amplify the effect of selec-
tive DoS. Bauer et al. [11] showed that deploying a moderate number of inexpensive3

middle-only relays can boost the effect of selective DoS attack.

2.3 Threat Model

In our threat model we assume that a small fraction (typically 20%) of the Tor relays
are compromised and for each user g (where g ∈ {0, 1/3, 2/3, 1}) fraction of the guard
nodes are compromised. Compromised relays carry out selective DoS attack, however
they may choose to perform probabilistic dropping where a compromised relay termi-
nates a certain fraction of all circuits that it cannot compromise. Finally, we assume that
probes are indistinguishable from real user traffic4.

3 Detection Algorithm

Our algorithm is built on the fundamental assumption of the Tor security model that
a relatively small fraction of all relays are compromised. The algorithm works in two
phases and runs periodically. Table 1 summarizes the different parameters used for our
detection algorithm.

2 To be more precise, the correct fraction would be tg · te, where tg and te are the fractions of
the guard and exit bandwidth under observation, respectively. For simplicity of presentation,
we will assume tg = te = tm = t in the rest of the paper.

3 Middle-only nodes do not have to fulfill stronger commitments (e.g., minimum bandwidth,
minimum uptime, legal issues related to exit policies) that guard and exit nodes have to fulfill.

4 To mask probes from actual user traffic we propose downloading popular web pages listed by
Alexa [5]. More discussion is available in our technical report [16].



Table 1: Parameters Used
Setting Parameter Description

t Fraction of relays compromised
Environmental g Fraction of compromised guards per user

d Random drop rate by compromised nodes
N # of working Tor circuits created in 1st phase

Tunable K # of probes used per circuit in 2nd phase
θ Threshold for classifying circuit

3.1 First Phase

Under active use, Tor will switch to a new circuit every 10 minutes, meaning that we
need 6 non-compromised circuits every hour. So in the first phase of our detection
algorithm we iteratively generate a random Tor circuit and test its functionality by re-
trieving a random web file through the circuit. If it fails we discard the circuit and try a
new circuit. We stop when we have N (we can calculate the value of N using equation:
N =

⌈
6× gt+(1−g)(1−t)2

(1−g)(1−t)2

⌉
. Considering worst case scenario we can set the value of N

to 10) working circuits. If an adversary is carrying out selective DoS attack then after
the first phase we should have a set of circuits of form either CXC or HHH, where C
denotes a compromised relay, H denotes an honest one, and X is a relay of any type.

3.2 Second Phase

In the second phase, we examine each of the circuits passing the first phase (we will
call these circuits as potential circuits) as follows:

• We randomly pick K(1 ≤ K < N) other circuits (we will call them as candidate
circuits) out of the list of potential circuits.

• For each of the K candidate circuits, we change the exit relay of the potential
circuit being evaluated with the exit relay of the candidate circuit and choose a
random middle relay from the candidate set. We then test the functionality of the
new circuit by performing a web retrieval through it. If, out of these K probes,
θ or more succeed, we consider the evaluated circuit to be honest; otherwise, we
consider it to be compromised.

Note that under selective DoS, if we change the exit relay of a compromised circuit with
that of an honest circuit, we will get a circuit where the entry is compromised while the
exit is honest and hence the file retrieval should fail. On the other hand, if both the
evaluated and candidate circuits are honest or compromised, the probe will succeed.
We expect more success for an honest circuit, since most of the potential circuits are
honest; we use θ as a threshold for distinguishing between the two circuit types. At the
end of the second phase, we will have some number of potentially honest circuits. This
collection of circuits is then used for making real anonymous connections.



4 Security Analysis

4.1 False Error Rates

We first evaluate the false-negative (FN) and false-positive (FP) errors of our algo-
rithm under selective DoS strategy. False-negative (FN) error, i.e., the fraction of com-
promised circuits that pass our detection algorithm, depends upon the number of com-
promised (n(CXC)) and honest (n(HHH)) circuits that pass the first phase (we can
compute such probabilities using Binomial distributions). Now, a false-negative error
occurs when a compromised circuit is paired with at least θ other compromised candi-
date circuits in the second phase. So we can use hypergeometric distribution to calculate
Pr(FN) (similarly we can compute Pr(FP)). Detailed derivation of these false errors
can be found in our technical report [16]. Transient network failure can directly influ-
ence the success rate of our probing, so it can affect both FN and FP errors. We discuss
the impact of such failures in our technical report [16] as well.

4.2 Tuning Parameters

Security vs Overhead: Our detection algorithm has two tunable parameters (K, θ)
(see Table 1 for description). For tuning purpose, we introduce two evaluation metrics:
security (ψ) and overhead (η). We then tune K and θ in terms of these evaluation
metrics. We define security as the probability of not choosing a compromised circuit for
actual usage and overhead as the expected number of probes required for each usable
circuit (by usable circuits we refer to circuits that are used for actual client traffic). We
define ψ and η using the following functions (both of these metrics are approximations):

ψ = 1− gt× Pr(FN)

gt× Pr(FN) + (1− g)(1− t)2 × (1− Pr(FP))
(1)

η =
1 +

[
gt+ (1− g)(1− t)2

]
×K

gt× Pr(FN) + (1− g)(1− t)2 × (1− Pr(FP))
(2)

Detailed derivations of these metrics can be found in our technical report [16]. We can
then look at the distribution of ψ vs η for different values of (K, θ) and choose a (K, θ)
pair that achieves satisfactory security guarantee at the cost of reasonable overhead.

5 Experimental Evaluation

5.1 Simulation Results

We implemented a simulator in C++ that emulates the basic functionality of Tor circuit
construction and selective DoS attacks. We collected real Tor node information from
the Tor network status page [10] and randomly tagged 20% (t = 0.2) of the bandwidth
to be controlled by a compromised entity. To analyze the robustness and effectiveness
of our detection algorithm we vary g (0 ≤ g ≤ 1) and d (0 ≤ d ≤ 1) in our simulations.
Here, 100% drop rate refers to selective DoS and 0% drop means no dropping at all.
Based on empirical results from our technical report [16], we setK = 3 and θ = 2 in all
the simulations. All simulation results are averaged over 100 runs with 95% confidence
interval.



Robustness: First, we will look at the robustness of our detection algorithm in filtering
out compromised circuits. For this purpose we evaluate the probability of selecting
compromised circuits, Pr(CXC)5, against different drop rates, d.
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Fig. 1: Probability of selecting compromised cir-
cuits (CXC) for different drop rates d. In general
Pr(CXC) decreases as d rises compared to the
conventional Tor network.

From Figure 1, we see that as drop
rate d increases, the probability of se-
lecting compromised circuits for our ap-
proach lowers compared to the conven-
tional Tor circuit construction policy (in-
dicated by the dashed lines). The main
reason behind the decrease of Pr(CXC)
lies on the fact that as compromised
nodes start to perform aggressive drop-
ping, the pool of available circuits after
the first phase quickly converges to the
set {CXC,HHH}. This in turn lowers a
compromised circuit’s chance of selecting
other compromised circuits as candidates
in the second phase because honest cir-
cuits dominate over compromised circuits
for t = 0.2.

5.2 Real-World Experiment

We carried out real-world experiments by introducing our own relays into the Tor net-
work, all of which acted as compromised nodes. For this purpose we used 11 Emulab
[2] machines, 10 of which were configured to act as Tor relays with a minimum band-
width capacity of 20Kbps. Note that all our nodes belonged to the same /16 subnet,
meaning that no user would (by default) choose two of our nodes in the same circuit.
Moreover, to prevent other users from using our nodes as exit nodes, we configured our
relays with a fixed exit policy (allowing connection to only specific destinations). All
these measures were taken to respect the privacy of Tor users. To implement selective
DoS, we take an approach similar to the one described by Bauer et al. [12]. We mod-
ified Tor source code version-tor-0.2.2.35 and implemented our detection algorithm in
the client side in Python (we used the Python version of Tor-Controller [6]).

Robustness: We first query the Tor directory server to retrieve a list of all available
Tor relays and then consider only those routers which are flagged as running, stable
and valid, because we want our routers to be alive and running during our experiments.
We selected 40 Tor nodes (3 guards, 19 exits and 18 relays) at random with probability
proportional to their bandwidth and added our own 10 nodes to this set to get a total of
50 nodes. Then we ran our experiments on this small set of Tor nodes where nodes were
selected randomly. This choice results in about 20% of the nodes being compromised.
To emulate user traffic, we retrieve random web files 100–300 KB in size. We set K =
3, θ = 2 for our experiments. Table 2 summarizes our findings.

5 Pr(CXC) = n(CXC)/ [n(HHH) + n(CXC) + (1− d)n(Others)]



Overhead: Let us now estimate what kind of bandwidth overhead our mechanism
would inflict on the real Tor network. Now on average a single usable circuit requires
approximately 4 probes (one in the 1st phase and 3 in the 2nd phase). And since we
are proposing to use popular web sites as probing destinations we can approximate the
average probe size to be 300KB [26]. So the total traffic used by a single user every
one hour is (6 × 3 × 300 × 4)KB≈ 21MB. Now, Tor’s bandwidth capacity was found
to be 3.21GB/s [7] during the month of September 2012. If we allow 5% of the band-
width to be used for our detection algorithm then we can support approximately 28 000
simultaneous users per hour (i.e.,≈ 672 000 user attempts daily which is comparable to
619 696, the peak number of daily Tor users for October 2012 [7]).

g FN FP ψ
Security in
Current Tor

0 0.0 0.0664 1.0 1.0
1/3 0.0 0.178 1.0 0.867
2/3 0.133 0.283 0.843 0.612
1 1.0 0.0 0.0 0.0

Table 2: Results from the Tor Network

From Table 2 we see that as g increases
the security assurance provided by both our
approach and the conventional Tor network
goes down. However, for g = 1/3, 2/3 our
approach shows significant improvement in
filtering out compromised circuits.

6 Related Work

Borisov et al. [13] first showed that carrying out selective DoS could benefit an adver-
sary to increase its chance of compromising anonymity for both high and low-latency
anonymous communication systems. In fact, it was pointed out that with 20% com-
promised nodes in Salsa [22], the selective DoS attack results in 19.14% compromised
tunnels compared to the conventional security analysis of 6.82% compromised tunnels.

Later on Danner et al. [15] proposed a detection algorithm for selective DoS attack
on Tor. Their algorithm basically probes each individual Tor node in the network and
they prove that this requires O(n) probes to detect all compromised nodes in a Tor
network comprising of n participants. For circuits of length 3, their algorithm requires
3n probes; however to handle transient network failures they propose to repeat each
probe 10 times. Clearly, their approach seems only practical for a centralized design,
but ours is a local mechanism to defend against selective DoS.

Recently, Mike Perry proposed a client-side accounting mechanism that tracks the
circuit failure rate of each guard node used by a client [9]. The goal is to avoid ma-
licious guards that deliberately fail circuits extending to non-colluding exit nodes. We
take a more proactive approach to finding malicious circuits through probing instead of
tracking actual circuit usage.

7 Conclusion

Anonymous communication systems like Tor are vulnerable to selective DoS attacks
that considerably lower anonymity. Such attacks however, can be detected through
probing. Our detection algorithm probes communication channels to filter out poten-
tially compromised ones with high probability. We also show that adaptive adversaries



who choose to deny service probabilistically do not benefit from adopting such a strat-
egy. Our experimental results demonstrate that our detection algorithm can effectively
defend users against selective DoS attack.
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